[1]李凯文, 张涛, 王锐, 等. 基于深度强化学习的组合优化研究进展[J]. 自动化学报, 2021, 47(11):2521-2537.
LI Kaiwen, ZHANG Tao, WANG Rui, et al. Research Reviews of Combinatorial Optimization Methods Based on Deep Reinforcement Learning[J]. Acta Automatica Sinica, 2021, 47(11):2521-2537.
[2]李颖俐, 李新宇, 高亮. 混合流水车间调度问题研究综述[J]. 中国机械工程, 2020, 31(23):2798-2813.
LI Yingli, LI Xinyu, GAO Liang. Review on Hybrid Flow Shop Scheduling Problems[J]. China Mechanical Engineering, 2020, 31(23):2798-2813.
[3]黎声益, 马玉敏, 刘鹃. 基于双深度Q学习网络的面向设备负荷稳定的智能车间调度方法[J]. 计算机集成制造系统, 2023, 29(1):91-99.
LI Shengyi, MA Yumin, LIU Juan. Smart Shop Floor Scheduling Method for Equipment Load Stabilization Based on Double Deep Q-learning Network[J]. Computer Integrated Manufacturing Systems, 2023, 29(1):91-99.
[4]贺俊杰, 张洁, 张朋, 等. 基于长短期记忆近端策略优化强化学习的等效并行机在线调度方法[J]. 中国机械工程, 2022, 33(3):329-338.
HE Junjie, ZHANG Jie, ZHANG Peng, et al. Related Parallel Machine Online Scheduling Method Based on LSTM-PPO Reinforcement Learning[J]. China Mechanical Engineering, 2022, 33(3):329-338.
[5]LIU Renke, PIPLANI R, TORO C. Deep Reinforcement Learning for Dynamic Scheduling of a Flexible Job Shop[J]. International Journal of Production Research, 2022, 60(13):4049-4069.
[6]LI Yuxin, GU Wenbin, YUAN Minghai, et al. Real-time Data-driven Dynamic Scheduling for Flexible Job Shop with Insufficient Transportation Resources Using Hybrid Deep Q Network[J]. Robotics and Computer-Integrated Manufacturing, 2022, 74:102283.
[7]WU Wenbo, HUANG Zhengdong, ZENG Jiani, et al. A Fast Decision-making Method for Process Planning with Dynamic Machining Resources via Deep Reinforcement Learning[J]. Journal of Manufacturing Systems, 2021, 58:392-411.
[8]LEE Y H, LEE S. Deep Reinforcement Learning Based Scheduling within Production Plan in Semiconductor Fabrication[J]. Expert Systems with Applications, 2022, 191:116222.
[9]HE Zhenglei, TRAN K P, THOMASSEY S, et al. Multi-objective Optimization of the Textile Manufacturing Process Using Deep-Q-network Based Multi-agent Reinforcement Learning[J]. Journal of Manufacturing Systems, 2022, 62:939-949.
[10]郭具涛, 吕佑龙, 戴铮, 等. 基于复合规则和强化学习的混流装配线调度方法[J]. 中国机械工程, 2023, 34(21):2600-2606.
GUO Jutao, LYU Youlong, DAI Zheng, et al. Compound Rules and Reinforcement Learning Based Scheduling Method for Mixed Model Assembly Lines[J]. China Mechanical Engineering, 2023, 34(21):2600-2606.
[11]刘亚辉, 申兴旺, 顾星海, 等. 面向柔性作业车间动态调度的双系统强化学习方法[J]. 上海交通大学学报, 2022, 56(9):1262-1275.
LIU Yahui, SHEN Xingwang, GU Xinghai, et al. A Dual-system Reinforcement Learning Method for Flexible Job Shop Dynamic Scheduling[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9):1262-1275.
[12]ZHANG Jiadong, HE Zhixiang, CHAN W H, et al. DeepMAG:Deep Reinforcement Learning with Multi-agent Graphs for Flexible Job Shop Scheduling[J]. Knowledge-Based Systems, 2023, 259:110083.
[13]GUI Yong, TANG Dunbing, ZHU Haihua, et al. Dynamic Scheduling for Flexible Job Shop Using a Deep Reinforcement Learning Approach[J]. Computers & Industrial Engineering, 2023, 180:109255.
[14]ZHANG Lu, FENG Yi, XIAO Qinge, et al. Deep Reinforcement Learning for Dynamic Flexible Job Shop Scheduling Problem Considering Variable Processing Times[J]. Journal of Manufacturing Systems, 2023, 71:257-273.
[15]何彦, 王乐祥, 李育锋, 等. 一种面向机械车间柔性工艺路线的加工任务节能调度方法[J]. 机械工程学报, 2016, 52(19):168-179.
HE Yan, WANG Lexiang, LI Yufeng, et al. A Scheduling Method for Reducing Energy Consumption of Machining Job Shops Considering the Flexible Process Plan[J]. Journal of Mechanical Engineering, 2016, 52(19):168-179.
[16]DU Yu, LI Junqing, LI Chengdong, et al. A Reinforcement Learning Approach for Flexible Job Shop Scheduling Problem with Crane Transportation and Setup Times[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4):5695-5709.
[17]NAIMI R, NOUIRI M, CARDIN O. A Q-learning Rescheduling Approach to the Flexible Job Shop Problem Combining Energy and Productivity Objectives[J]. Sustainability, 2021, 13(23):13016.
[18]LI Rui, GONG Wenyin, LU Chao, et al. A Learning-based Memetic Algorithm for Energy-efficient Flexible Job-shop Scheduling with Type-2 Fuzzy Processing Time[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(3):610-620.
[19]张凯, 毕利, 焦小刚. 集成强化学习算法的柔性作业车间调度问题研究[J]. 中国机械工程, 2023, 34(2):201-207.
ZHANG Kai, BI Li, JIAO Xiaogang. Research on Flexible Job-shop Scheduling Problems with Integrated Reinforcement Learning Algorithm[J]. China Mechanical Engineering, 2023, 34(2):201-207.
[20]陈睿奇, 黎雯馨, 王传洋, 等. 基于深度强化学习的工序交互式智能体Job shop调度方法[J]. 机械工程学报, 2023, 59(12):78-88.
CHEN Ruiqi, LI Wenxin, WANG Chuanyang, et al. Interactive Operation Agent Scheduling Method for Job Shop Based on Deep Reinforcement Learning[J]. Journal of Mechanical Engineering, 2023, 59(12):78-88.
|