[1]TURNER N, GOODWINE B, SEN M. A Review of Origami Applications in Mechanical Engineering[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2016, 230(14):2345-2362.
[2]罗浚雄, 张萌, 侯浩宇, 等. 折纸机构及机器人应用研究[J]. 机器人技术与应用, 2021(5):27-32.
LUO Junxiong, ZHANG Meng, HOU Haoyu, et al. Research on Origami Mechanism and Robot Application[J]. Robot Technique and Application, 2021(5):27-32.
[3]方虹斌, 吴海平, 刘作林, 等. 折纸结构和折纸超材料动力学研究进展[J]. 力学学报, 2022, 54(1):1-38.
FANG Hongbin, WU Haiping, LIU Zuolin, et al. Advances in the Dynamics of Origami Structures and Origami Metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1):1-38.
[4]LIU Zhiquan, QIU Hui, LI Xiao, et al. Review of Large Spacecraft Deployable Membrane Antenna Structures[J]. Chinese Journal of Mechanical Engineering, 2017, 30(6):1447-1459.
[5]RUS D, TOLLEY M T. Design, Fabrication and Control of Origami Robots[J]. Nature Reviews Materials, 2018, 3:101-112.
[6]SON H, PARK Y, NA Y, et al. 4D Multiscale Origami Soft Robots:a Review[J]. Polymers, 2022, 14(19):4235.
[7]肖洪, 成正爱, 郭宏伟, 等. 空间太阳能电站大折展比体展开桁架机构[J]. 机械工程学报, 2020, 56(13):128-137.
XIAO Hong, CHENG Zhengai, GUO Hongwei, et al. Large Folding Ratio 3D Deployable Truss Mechanism for Space Solar Power Station[J]. Journal of Mechanical Engineering, 2020, 56(13):128-137.
[8]LI Shuguang, STAMPFLI J J, XU H J, et al. A Vacuum-driven Origami “Magic-ball” Soft Gripper[C]∥2019 International Conference on Robotics and Automation(ICRA). Montreal, 2019:7401-7408.
[9]李彦伯, 李梓铭. 材料·建构·体验——同济大学国际建造节评委会特别奖作品《显·隐》中的建筑学本体话语[J]. 当代建筑, 2020(10):124-127.
LI Yanbo, LI Ziming. Materials, Construction, Experience:the Architectural Noumenon Discourses on the Jury Special Mentioned Prize “String Cubes” in Tongji International Construction Festival[J]. Contemporary Architecture, 2020(10):124-127.
[10]LEANZA S, WU Shuai, SUN Xiaohao, et al. Active Materials for Functional Origami[J]. Advanced Materials, 2024, 36(9):2302066.
[11]胡楠, 陈花玲. 折纸结构驱动技术的研究进展[J]. 机械工程学报, 2020, 56(15):118-128.
HU Nan, CHEN Hualing. Progress in Actuating Technology of Origami Structure[J]. Journal of Mechanical Engineering, 2020, 56(15):118-128.
[12]MARTINEZ R V, FISH C R, CHEN Xin, et al. Elastomeric Origami:Programmable Paper-elastomer Composites as Pneumatic Actuators[J]. Advanced Functional Materials, 2012, 22(7):1376-1384.
[13]LI Shuguang, VOGT D M, RUS D, et al. Fluid-driven Origami-inspired Artificial Muscles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50):13132-13137.
[14]AHMED S, LAUFF C, CRIVARO A, et al. Multi-field Responsive Origami Structures:Preliminary Modeling and Experiments[C]∥ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Portland, 2013:DETC2013-12405.
[15]KIM S J, LEE D Y, JUNG G P, et al. An Origami-inspired, Self-locking Robotic Arm that Can Be Folded Flat[J]. Science Robotics, 2018, 3(16):eaar2915.
[16]LEE Jingyu, RODRIGUE H. Origami-based Vacuum Pneumatic Artificial Muscles with Large Contraction Ratios[J]. Soft Robotics, 2019, 6(1):109-117.
[17]ZHANG Zhuang, FAN Weicheng, CHEN Genliang, et al. A 3D Printable Origami Vacuum Pneumatic Artificial Muscle with Fast and Powerful Motion[C]∥2021 IEEE 4th International Conference on Soft Robotics(RoboSoft). New Haven, 2021:551-554.
[18]TAO Ran, JI Longtao, LI Ying, et al. 4D Printed Origami Metamaterials with Tunable Compression Twist Behavior and Stress-strain Curves[J]. Composites Part B:Engineering, 2020, 201:108344.
[19]LI Zhen, KIDAMBI N, WANG Liangmo, et al. Uncovering Rotational Multifunctionalities of Coupled Kresling Modular Structures[J]. Extreme Mechanics Letters, 2020, 39:100795.
[20]喻莹, 徐新卓, 罗尧治. 基于Kresling折纸构型的空间结构可控失稳模式研究[J]. 工程力学, 2021, 38(8):75-84.
YU Ying, XU Xinzhuo, LUO Yaozhi. Programmable Instability of Spatial Structures Based on Kresling Origami[J]. Engineering Mechanics, 2021, 38(8):75-84.
|