China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (02): 226-233.DOI: 10.3969/j.issn.1004-132X.2022.02.013

Previous Articles     Next Articles

Numerical Simulation and Experimental Verification of High-power Ultrasonic Welding of Al/Steel Joints

LI Huan1;HUANG Chaowang1;ZHOU Kang2;ZHANG Changxin1;ZENG Caiyou3   

  1. 1.School of Mechanical Engineering,Yangtze University,Jingzhou,Hubei,434023
    2.School of Mechatronical Engineering,Beijing Institute of Technology,Beijing,100081
    3.School of Mechanical Engineering and Automation,Beihang University,Beijing,100191
  • Online:2022-01-25 Published:2022-02-18

铝/钢大功率超声波焊接过程模拟与试验验证

李欢1;黄朝望1;周亢2;张长鑫1;曾才有3   

  1. 1.长江大学机械工程学院,荆州,434023
    2.北京理工大学机电学院,北京,100081
    3.北京航空航天大学机械工程及自动化学院,北京,100191
  • 作者简介:李欢,男,1983年生,讲师。主要研究方向为异质金属先进焊接技术。E-mail:lihuan7@126.com。
  • 基金资助:
    国家自然科学基金 (51605103);
    长江大学青年博士科研项目(802100270402)

Abstract:  To reveal the mechanism of high-power ultrasonic welding, a three-dimensional thermal-mechanics coupling finite element model of high-power ultrasonic welding was established for predicting the interface temperature and materials plastic deformation in high-power ultrasonic welding 6061-T6 aluminum alloy to DC04 mild steel. The welding heat inputs were related to the ultrasonic power, while the materials ultrasonic softening was related to the welting vibration amplitude and frequency. The simulation results show that the rate of ultrasonic electric power converted into welding heats increases exponentially and then stabilizes. The maximum welding temperature is as 566 ℃, which reaches its 87% of the melting point of aluminum alloys. At the steel/aluminum interfaces, the materials plastically flow from the outside to the central area beneath the sonotrode, and accumulate around at the welding zones. This promotes the formation of welds, resulting in the area of the welded area being larger than that of the sonotrode. In addition, in the initial stage, the sonotrode penetrates into top surfaces of the steels. Subsequently, under the action of ultrasonic softening and high temperature, the speed of the anvil tips penetration into the aluminum alloy surfaces is accelerated. The penetrations depth of workpieces reaches maximum at the end of welding. 

Key words:  , ultrasonic metal welding, finite element modeling, welding interface, plastic deformation

摘要: 为了揭示大功率超声波焊接机理,以6061-T6铝合金和DC04低碳钢作为工件材料,建立了大功率超声波金属焊接的三维有限元热力耦合模型,模拟了焊接温度场以及工件塑性变形过程。模型中的焊接热源与超声功率有关;工件的超声软化与焊接振幅及频率相关。模拟结果表明:超声电功率转化为焊接热量的转化率呈指数上升,随后近似稳定;焊接区域最高温度为566 ℃,为铝合金熔点的87%;工件接触面的材料由外侧向焊头下方的中间区域发生塑性流动并堆积在区域边缘,促进了焊接界面形成,且堆积产生的焊接区域的面积远大于焊头端面面积;在焊接初期,焊头的下压表现为钢的嵌入,随后在超声软化和高温作用下,铝合金表面的嵌入速度加快,焊接结束时,钢和铝表面均达到最大的嵌入深度。

关键词: 超声波金属焊, 有限元建模, 焊接界面, 塑性变形

CLC Number: