China Mechanical Engineering ›› 2013, Vol. 24 ›› Issue (07): 988-993.
Previous Articles Next Articles
Wang Shijun;Sun Xiasi;Zhao Jinjuan;Yu Lei
Online:
2013-04-10
Published:
2013-04-27
Supported by:
王世军;孙夏思;赵金娟;于雷
基金资助:
CLC Number:
WANG Shi-Jun, SUN Jia-Sai, DIAO Jin-Juan, XU Lei. Advances in Contact Stiffness Measurement Using Ultrasonic Method[J]. China Mechanical Engineering, 2013, 24(07): 988-993.
王世军, 孙夏思, 赵金娟, 于雷. 超声波测量接触刚度的研究进展[J]. 中国机械工程, 2013, 24(07): 988-993.
[1]Manolov N T. Ultrasonic Conductance of Contact of Solids(in Russian)[R]. Sofia:Sofia Technical University, 1970. [2]Manolov N T. Acoustical Method of Investigation of Contact of Solids(in Russian)[D]. Moscow: Moscow State University,1970. [3]Kendall K, Tabor D. An Ultrasonic Study of the Area of Contact between Stationary and Sliding Surfaces[J]. Proc. Roy. Soc. London Ser. A, 1971, 323: 321-340. [4]Tattersall H G. The Ultrasonic Pulse-Echo Technique as Applied to Adhesion Testing[J]. Journal of Applied Physics: Part D, 1973, 6: 819-832. [5]Tsukizoe T, Hisakado T. On the Mechanism of Contact between Metal Surfaces-the Penetrating Depth and the Average Clearance,Part 1[J]. J. Basic Eng., Trans. ASME, Ser. D, 1965,87 (3):666-674. [6]Tsukizoe T, Hisakado T. On the Mechanism of Contact between Metal Surfaces-the Real Area and the Number of the Contact Points[J]. J. Lubr. Technol., Trans. ASME, 1968,12: 81-88. [7]Haines N F. The Theory of Sound Transmission and Reflection at Contacting Surfaces, CEGB Report RD-B-N4744[R]. Berkeley, California: Berkeley Nuclear Laboratories, 1980. [8]Wooldridge A B. The Effects of Compressive Stress on the Ultrasonic Response of Steel-Steel Interfaces and of Fatigue Cracks, CEGB Report NW-SSD-RR-42-79[R]. Berkeley,California: Berkley Nuclear Laboratories, 1979. [9]Arakawa T. A Study on the Transmission and Reflection of an Ultrasonic Beam at Machined Surfaces Pressed Against Each Other[J]. Materials Evaluation, 1983, 41(5):714-719. [10]Minakuchi Y, Yoshimine K, Koizumi T,et al. Contact Pressure Measurement by Means of Ultrasonic Waves (on a Method of Quantitative Measurement)[J]. Bulletin of the JSME,1985,28:40-45. [11]Baik J M, Thompson R B. Ultrasonic Scattering from Imperfect Interfaces: a Quasistatic Model[J]. J. Non-destruct. Eval. , 1984, 4: 177-196. [12]Krolikowski J, Szczepek J, Witczak Z. High Pressure in Ultrasonic Study of Contact of Solids[J]. Physica B+C, 1986, 139/140:803-805. [13]Krolikowski J, Szczepek J, Witczak Z. Ultrasonic Investigation of Contact between Solids under High Hydrostatic Pressure[J]. Ultrasonics, 1989,27(1): 45-49. [14]Szczepek J, Witczak Z, Krolikowski J. Ultrasonic Investigations of Contact Interface of Solids by Means of Bulk Shear Waves[C]//Proc.Third Int. Conf. on Joining Ceramics, Glass and Metal. Bad Nauheim, Germany, 1989: 341-346. [15]Krolikowski J, Szczepek J,Witczak Z. Absorption of Ultrasound in Contact Interface of Solids[C]//Proc. Third Int. Conf. on Joining Ceramics, Glass and Metal. Bad Nauheim, Germany,1989: 337-340. [16]Krolikowski J, Szczepek J. Prediction of Contact Parameters Using Ultrasonic Method[J]. Wear, 1991, 148: 181-195. [17]Nagy P B. Ultrasonic Classification of Imperfect Interfaces[J]. Journal of Nondestructive Evaluation, 1992, 11: 127-139. [18]Krolikowski J, Szczepek J. Assessment of Tangential and Normal Stiffness of Contact between Rough Surfaces Using Ultrasonic Method[J]. Wear, 1993, 160: 253-258. [19]Mindlin R D. Compliance of Elastic Bodies in Contact[J]. L. Appl. Mech., 1949, 71: 259-268. [20]Yoshioka N. The Role of Plastic Deformation in Normal Loading and Unloading Cycles[J]. J. Geophys. Res. 99(B8), 1994:15561-15568. [21]Drinkwater B, Dwyer-Joyce R, Cawley P. A Study of the Interaction between Ultrasound and a Partially Contacting Solid-rubber Solid Interface[J]. Proc. Roy. Soc. London A, 1995,452: 2613-2628. [22]Drinkwater B, Dwyer-Joyce R. Cawley P. A Study of the Transmission of Ultrasound across Solid-rubber Interfaces[J]. J. Acoust. Soc. Am., 1997, 101: 970-981. [23]Webster M N, Sayles R S. A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces[J]. Trans. ASME: J. Tribology, 1986, 108: 314-320. [24]Greenwood J A, Williamson J B P. Contact of Nominally Flat Surfaces[J] Proc. Roy. Soc. London Ser. A, 1966, 295: 300-319. [25]Nayak P R. Some Aspects of Surface Roughness Measurements[J]. Wear, 1973, 26: 165-174. [26]Nayak P R. Random Process Model of Rough Surfaces[J]. J. Lubr. Technol., 1971, 93: 398-407. [27]Nayak P R. Random Process Model of Rough Surfaces in Plastic Contact[J]. Wear, 1973, 26: 305-333. [28]Lavrentyev A I, Rokhlin S I. Ultrasonic Spectroscopy of Imperfect Interfaces between a Layer and Two Solids[J]. J. Acoust. Soc. Am., 1998, 103: 657-664. [29]Dwyer-Joyce R S, Drinkwater B W, Quinn A M. The Use of Ultrasound in the Investigation of Rough Surface Interfaces[J]. ASME Trans. J. Tribol., 2001, 123: 8-16. [30]Baltazar A, Rokhlin S I, Pecorari C. On the Relation between Ultrasonic and Micromechanic Properties of Contacting Rough Surfaces[J]. Journal of Mech. Phys. Solids, 2002, 50:1397-1416. [31]Baltazar A, Wang L, Xie B, et al. Inverse Ultrasonic Determination of Imperfect Interface and Bulk Properties of a Layer between Two Solids[J]. J. Acoust. Soc. Am., 2003, 114: 1424-1434. [32]Kim J Y, Baltazar A, Rokhlin S I. Ultrasonic Assessment of Rough Surface Contact between Solids from Elastoplastic Loading-Unloading Hysteresis Cycle[J]. J. Mech. Phys. Solids, 2004, 52: 1911-1934. [33]Baltazar A, Kim J Y, Rokhlin S I. Ultrasonic Determination of Area of Randomly Rough Surfaces in Elastoplastic Contact[J]. Revista Mexicana De Fisica., 2006, 52: 37-47. [34]Kim Jin-Yeon, Lee Jun-Shin. A Micromechanical Model for Nonlinear Acoustic Properties of Interfaces between Solids[J]. J. Appl. Phys., 2007,101, 043501. [35]Gonzalez-Valadez M, Dwyer-Joyce R S. Asperity Creep Measured by the Reflection of Ultrasound at Rough Surface Contact[J]. ASME J. Tribol., 2009, 131: 021410-8. [36]Yoshioka N, Scholz C H. Elastic Properties of Contacting Surfaces under Normal and Shear Loads, 1, Theory[J]. J. Geophys. Res., 1989, 94: 17681-17690. [37]Krolikowski J, Szczepek J, Witczak Z. High Pressure in Ultrasonic Study of Contact of Solids[J]. Physica B+C,1986,139/140:803-805. [38]Sherif H A, Kossa S S. Relationship between Normal and Tangential Contact Stiffness of Nominally Flat Surfaces[J]. Wear, 1991, 151: 49-62. [39]Baltazar A, Rokhlin S I, Pecorari C. On the Relationship between Ultrasonic and Micromechanical Properties of Contacting Rough Surfaces[J]. J. Mech. Phys. Solids, 2002, 50:1397-1416. [40]Gonzalez-Valadez M, Baltazar A, Dwyer-Joyce R S. Study of Interfacial Stiffness Ratio of a Rough Surface in Contact Using a Spring Model[J]. Wear, 2010, 268(3/4):373-379. [41]焦敬品, 曾宪超, 张强, 等. 基于微观模型分析的承压粗糙界面接触状态超声评价方法[J]. 机械工程学报,2011,47(17):78-83. Jiao Jingpin, Zeng Xianchao, Zhang Qiang, et al. Micromechanical Model of Rough Surface for Evaluation of Acoustic Properties of Pressure Interfaces[J]. Journal of Mechanical Engineering, 2011, 47(17):78-83. |
[1] | WU Ruo, WEI Peitang, XIE Huaijie, BIAN Jiang, LU Zehua, LIU Huaiju. Contact Fatigue Performance of PEEK under Oil-injected Lubrication [J]. China Mechanical Engineering, 2024, 35(02): 221-228. |
[2] | DU Xu, CHANG Zexin, ZHENG Junqiang, REN Pengfei. A Real-time Tool Path Smoothing Algorithm Considering Joint Jerk Constraints [J]. China Mechanical Engineering, 2024, 35(02): 280-286. |
[3] | HU Bo, AN Jinyun, YIN Lairong, ZHOU Changjiang. Calculation Method of Time-varying Meshing Stiffness of Small Module Gear Transmissions [J]. China Mechanical Engineering, 2024, 35(01): 74-82. |
[4] | CHEN Guangyu, WENG Zhiwei, ZHANG Song, . Static Stiffness Analysis of Double-nut Ball Screws Considering Dimensional Errors and Radial Loads [J]. China Mechanical Engineering, 2023, 34(24): 2952-2962. |
[5] | HUANG Xiangmao. Numerical Analysis Method and Test for Contact Stress of Cycloidal Gear in RV Reducer [J]. China Mechanical Engineering, 2023, 34(24): 3015-3023. |
[6] | WANG Yatao, QIU Ming, ZHANG Jiaming, WANG Huijie. Cause Analysis on Multi-point Contact between Steel Ball and Raceway of Four-point Contact Ball Bearings [J]. China Mechanical Engineering, 2023, 34(23): 2794-2804. |
[7] | HAO Zhuangzhuang, ZHANG Qingchun, HU Yunbo, GUO Yibin, WANG Donghua, LI Wanyou. Research on Influences of Tooth Friction and Geometric Eccentricity Errors on Mesh Stiffness of Profile Shifted Spur Gear Pairs [J]. China Mechanical Engineering, 2023, 34(23): 2812-2823. |
[8] | JU Chun, LIU Jia, YANG Shengqiang, ZHANG Jingjing, ZHAO Xuhui, . Identification of Blade Leading and Trailing Edges and Study on Polishing Processes by Flag Wheel [J]. China Mechanical Engineering, 2023, 34(22): 2674-2683,2692. |
[9] | ZHANG Xiao, CHI Maoru, XIE Yuchen, WANG Huansheng, CAI Wubin, DAI Liangcheng. Optimization of Variable Gauge Train Wheel Treads Based on Reverse Design Method [J]. China Mechanical Engineering, 2023, 34(22): 2746-2757. |
[10] | XU Lixin, XIA Chen, YANG Bo. Analysis and Test on Dynamic Transmission Errors of RV Reducers under Load Conditions [J]. China Mechanical Engineering, 2023, 34(18): 2143-2152. |
[11] | WANG Liangwen, KONG Yangguang, WANG Ruolan, ZHANG Zhigang, LIU Xuling, LI Linfeng, . Simulation and Experimental Study of Contact-collision of Inner Braced Manipulators for Grasping Thin-walled Fragile Cylindrical Inner Wall Workpieces [J]. China Mechanical Engineering, 2023, 34(17): 2026-2036. |
[12] | GUO Wei, CAO Hongrui, ZI Yanyang, WEI Xunkai. Study on Contact Fatigue Crack Modeling and Propagation Law of Rolling Bearings [J]. China Mechanical Engineering, 2023, 34(16): 1891-1899. |
[13] | WEI Bingyang, GU Dewan, WANG Yongqiang, YANG Jianjun, . Friction Power Loss Analysis and Efficiency Test of High Reduction Hypoid Gears [J]. China Mechanical Engineering, 2023, 34(13): 1525-1532. |
[14] | SHEN Huiping, LI XiaLI Ju, LI Tao, MENG Qingmei, WU Guanglei. Effect of Constrained or Unconstrained Branches on Kinematics and Stiffness Performance of PMs —Design,Analysis and Optimization of Two Novel Three-translation PMs with Partial Motion Decoupling Being Examples#br# [J]. China Mechanical Engineering, 2023, 34(13): 1533-1549. |
[15] | DU Zhongqiu, SHEN Huiping, MENG Qingmei, LI Tao, YANG Tingli. Design and Performance Analysis of 8R Two-translational Spatial Parallel Mechanism with Motion Decoupling and Symbolic Positive Solutions [J]. China Mechanical Engineering, 2023, 34(12): 1425-1435. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 519
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 328
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||