[1]MURALI M S, ABISHEK B K, VARUN S K. Mask-less Ectrochemical Additive Manufacturing:a Feasibility Study[J]. Journal of Manufacturing Science and Engineering, 2015, 137:021006.
[2]MUHAMMAD H A, KRISHNA K S, REX S, et al. Localized and Mask-less Copper Deposition with Free-flow Jet Micro-electrochemical Additive Manufacturing[J]. International Journal of Electrical Machining, 2022, 27:16-21.
[3]XU J K, REN W F, LIAN Z X, et al. A Review Development of the Maskless Localized Electrochemical[J]. The International Journal of Advanced Manufacturing Technology, 2020,110:1731-1757.
[4]REN W F, XU J K, LIAN Z X, et al. Localized Electrodeposition Micro Additive Manufacturing of Pure Copper Microstructures[J]. International Journal of Extreme Manufacturing, 2021, 4(1):015101.
[5]WANG W, MING P M, AO S S. Additive Manufacturing of Three-dimensional Intricate Microfeatures by Electrolyte-column Localized Electrochemical Deposition[J]. Additive Manufacturing, 2022,50:102582.
[6]XIAO Y Q, WU M H, JIA W P. Effect of Process Parameters on Growth Pattern of Micro-nickel Column in Mask-less Localized Electrodeposition[J]. Procedia CIRP, 2022, 113:552-557.
[7]LI X C, MING P M, AO S S, et al. Review of Additive Electrochemical Micro-manufacturing Technology[J]. International Journal of Machine Tools and Manufacture, 2022, 173:103848.
[8]SUNDARAM M, BRANT A, RAJURKAR K. Electrochemical Additive Manufacturing of NiCoFeCuMo High Entropy Alloys Using a Combined Dissolution-deposition System[J]. CIRP Annals—Manufacturing Technology, 2022, 71(1):153-156.
[9]潘佳宝,贾卫平,吴蒙华,等. 定域性电化学增材制造三维微螺旋构件工艺[J]. 中国表面工程,2023,36(1):95-105.
PAN Jiabao, JIA Weiping, WU Menghua, et al. Process for Localized Electrochemical Additive Manufacturing of Three-dimensional Micro-spiral Components[J]. China Surface Engineering. 2023, 36(1):95-105.
[10]DAVID P. Electrochemical Additive Manufacturing Method Using Deposition Feedback Control[P]. US20230059846 A1, 2023-02-23.
[11]NAREK M, ABISHEK B K, MURALI M S. Localized Electrochemical Deposition Using Ultra-high Frequency Pulsed Power[J]. Procedia Manufacturing, 2019, 34:197-204.
[12]CHEN X L, CHEN J S, KRISHNA K S, et al. Localization of Jet Electrochemical Additive Manufacturing with a Liquid Confinement Technique[J]. Journal of Manufacturing Processes, 2022, 81:48-64.
[13]钱宁开,吴蒙华,贾卫平,等.脉冲电压幅值与电解液流动状态对无掩模定域性电沉积微镍柱的影响[J].稀有金属材料与工程,2021,50(3):918-923.
QIAN Ningkai, WU Menghua, JIA Weiping, et al. Effect of Pulse Voltage Amplitude and Electrolyte Flow States on Micro Nickel Column Prepared by Mask-less Localized Electrochemical Deposition[J]. Rare Metal Materials& Engineering, 2021, 50(3):918-923.
[14]AOGAKI R, MORIMOTO R, ASANUMA M. Nonequilibrium Fluctuations in Micro-MHD Effects on Electrodeposition[J]. Journal of Magnetism & Magnetic Materials, 2010, 322(9):1664-1668.
[15]MUTSCHKE G, TSCHULIK K, WEIER T, et al. On the Action of Magnetic Gradient Forces in Micro-structured Copper Deposition[J]. Electrochimica Acta, 2012, 55(28):9060-9066.
[16]尚中昇,阿达依·谢尔亚孜旦,周冠霖. 平行磁场辅助射流电沉积镍制备疏水表面[J].电镀与涂饰,2023,42(1):53-59.
SHANG Zhongsheng, ADAYI Xieeryazidan, ZHOU Guanlin. Fabrication of a Hydrophobic Surface by Parallel Magnetic Field-assisted Jet Electrodeposition of Nickel[J]. Electroplating & Finishing, 2023, 42(1):53-59.
[17]ZHANG X M, LI X C, MING P M, et al. Micro-electroforming High Aspect Ratio Microstructures under Magnetic Field[J]. Microsystem Technologies, 2019, 25(4):1401-1411.
[18]LONG Q, ZHONG Y B, WU J M. Research Progress of Magnetic Field Techniques for Electrodeposition of Coating[J]. International Journal of Electrochemical Science, 2020, 15(8):8026-8040.
[19]苏晓冰,吴蒙华,贾卫平,等. 基于无掩模定域性电沉积的3D打印平面微结构工艺研究[J].现代制造工程, 2022(5):18-23.
SU Xiaobing,WU Menghua,JIA Weiping, et al. Research on 3D Printing Planar Microstructure Process Based on Maskless Localized Electrodeposition[J]. Modern Manufacturing Engineering, 2022(5):18-23.
[20]BI X L, MENG L C. Electrochemical Deposition of Pure-nickel Microstructures with Controllable Size[J]. Micromachines, 2022, 13(5):704.
[21]LIU K, NIU Q B, WANG F L. Effects of Applied Potential, Initial Gap, and Megasonic Vibrations on the Localized Electrochemical Deposition of Ni-Co Microcolumns[J]. Materials Science and Engineering B, 2023, 289:116236.
[22]LONG Q, ZHONG Y B, WU J M. Effect of Magnetic Fields on the Behavior of Iron Electrodeposition[J]. International Journal of Electrochemical Science, 2020, 15(7):6955-6968.
[23]杨淋淋. 磁场电沉积铁镍基薄膜的组织与磁性能研究[D].大连:大连交通大学,2019.
YANG Linlin. Study on the Microstructure and Magnetic Properties of Fe-Ni Based Alloy Film Electrodeposited in Magnetic Field[D].Dalian:Dalian Jiaotong University, 2019.
[24]CORDERO Z C, KNIGHT B E, SCHUH C A. Six Decades of the Hall-petch Effect:a Survey of Grain-size Strengthening Studies on Pure Metals[J]. International Materials Reviews, 2016, 61(8):1-18.
[25]龚承敏. 脉冲电沉积制备纳米晶铜及其摩擦学特性研究[D]. 广州:广东工业大学,2021.
GONG Chengmin. Study on Preparation of Nanocrystalline Copper by Pulse Electrodeposition and Its Tribological Properties[D]. Guangzhou:Guangdong University of Technology, 2021.
[26]闵威. 纳米晶镍低温力学性能及变形机理研究[D]. 北京:北方工业大学,2021.
MING Wei. Study ofMechanical Properties and Deformation Mechanism of Nanocrystalline Nickel under Cryogenic Temperature[D]. Beijing:North China University of Technology, 2021.
[27]刘志健. 工业电解镍沉积层微观组织及晶粒演变特征[D]. 兰州:兰州理工大学,2021.
Zhijian. Microstructure and Grain Evolution Racteristics of Industrial Electrodeposited Coatings of Nickel[D]. Lanzhou:Lanzhou University of Technology, 2021.
|