[1]许灿. 面向复杂产品稳健可靠性的多层次系统不确定性分析与优化设计方法研究[D]. 上海:上海交通大学, 2021.
XU Can. Research on Uncertainty Analysis and Uncertainty-based Design Optimization of Multilevel Systems for Robustness and Reliability of Complex Products[D]. Shanghai:Shanghai Jiao Tong University, 2021.
[2]蒋琛, 邱浩波, 高亮. 随机不确定性下的可靠性设计优化研究进展[J]. 中国机械工程, 2020, 31(2): 190-205.
JIANG Chen, QIU Haobo, GAO Liang. Research Progresses in Reliability-based Design Optimization under Aleatory Uncertainties[J]. China Mechanical Engineering, 2020, 31(2): 190-205.
[3]高进, 崔海冰, 樊涛,等. 一种基于自适应Kriging集成模型的结构可靠性分析方法[J]. 中国机械工程, 2024, 35(1): 83-92.
GAO Jin, CUI Haibing, FAN Tao, et al. A Structural Reliability Calculation Method Based on Adaptive Kriging Ensemble Model[J]. China Mechanical Engineering, 2024, 35(1): 83-92.
[4]LEE S H, CHEN W. A Comparative Study of Uncertainty Propagation Methods for Black-box-type Problems[J]. Structural and Multidisciplinary Optimization, 2009, 37: 239-253.
[5]GUTMANN H M. A Radial Basis Function Method for Global Optimization[J]. Journal of Global Optimization, 2001, 19: 201-227.
[6]SMOLA A J, SCHLKOPF B. A Tutorial on Support Vector Regression[J]. Statistics and Computing, 2004, 14: 199-222.
[7]RASMUSSEN C E, WILLIAMS C K. Gaussian Processes for Machine Learning[M]. Cambridge: MIT Press, 2006.
[8]XIU D, KARNIADAKIS G E. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations[J]. SIAM Journal on Scientific Computing, 2002, 24: 619-644.
[9]BISHOP C M. Neural Networks for Pattern Recognition[M]. New York: Oxford University Press, 1995.
[10]SHAN S, WANG G G. Metamodeling for High Dimensional Simulation-based Design Problems[J]. Journal of Mechanical Design, 2010, 132: 051009.
[11]刘竟飞. 基于贝叶斯深度学习的高维不确定性传播方法研究[D]. 长沙:湖南大学, 2021.
LIU Jingfei. Study of Uncertainty Propagation Method via Bayesian Deep Learning for High Dimensional Problems[D]. Changsha:Hunan University, 2021.
[12]ZHANG D, ZHANG N, YE N, et al. Hybrid Learning Algorithm of Radial Basis Function Networks for Reliability Analysis[J]. IEEE Transactions on Reliability, 2021, 70: 887-900.
[13]赫万鑫. 基于高维模型表征的随机不确定性分析高效算法研究[D]. 大连:大连理工大学, 2021.
HE Wanxin. Efficient Stochastic Uncertainty Analysis Algorithms Based on High-dimensional Model Representation[D]. Dalian: Dalian University of Technology, 2021.
[14]LIU B, ZHANG Q, GIELEN G G E. A Gaussian Process Surrogate Model Assisted Evolutionary Algorithm for Medium Scale Expensive Optimization Problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18: 180-192.
[15]ZHOU Y, LU Z. An Enhanced Kriging Surrogate Modeling Technique for High-dimensional Problems[J]. Mechanical Systems and Signal Processing, 2020, 140: 106687.
[16]BOUHLEL M A, BARTOLI N, OTSMANE A, et al. Improving Kriging Surrogates of High-dimensional Design Models by Partial Least Squares Dimension Reduction[J]. Structural and Multidisciplinary Optimization, 2016, 53: 935-952.
[17]CONSTANTINE P G, DOW E, WANG Q. Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces[J]. SIAM Journal on Scientific Computing, 2014, 36: A1500-A1524.
[18]SONG Z, LIU Z, ZHANG H, et al. An Improved Sufficient Dimension Reduction-based Kriging Modeling Method for High-dimensional Evaluation-expensive Problems[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 418: 116544.
[19]TRIPATHY R, BILIONIS I, GONZALEZ M. Gaussian Processes with Built-in Dimensionality Reduction: Applications to High-dimensional Uncertainty Propagation[J]. Journal of Computational Physics, 2016, 321:191-223.
[20]KLEIJNEN J P C. Kriging Metamodeling in Simulation:a Review[J]. European Journal of Operational Research, 2009, 192:707-716.
[21]HELLAND I S. On the Structure of Partial Least Squares Regression[J]. Communications in Statistics-simulation and Computation, 1988, 17:581-607.
[22]LI K C. Sliced Inverse Regression for Dimension Reduction[J]. Journal of the American Statistical Association, 1991, 86:316-327.
[23]GOODHUE D L, LEWIS W, THOMPSON R. Does PLS Have Advantages for Small Sample Size or Non-normal Data?[J]. MIS Quarterly, 2012, 36:981-1001.
[24]LUO W, LI B. Combining Eigenvalues and Variation of Eigenvectors for Order Determination[J]. Biometrika, 2016, 103:875-887.
[25]MACDONALD B, RANJAN P, CHIPMAN H. GPfit:an R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs[J]. Journal of Statistical Software, 2015, 64:1-23.
[26]LIU D C, NOCEDAL J. On the Limited Memory BFGS Method for Large Scale Optimization[J]. Mathematical Programming, 1989, 45:503-528.
[27]LIU H, CAI J, ONG Y S. An Adaptive Sampling Approach for Kriging Metamodeling by Maximizing Expected Prediction Error[J]. Computers & Chemical Engineering, 2017, 106:171-182.
[28]KONAKLI K, SUDRET B. Polynomial Meta-models with Canonical Low-rank Approximations:Numerical Insights and Comparison to Sparse Polynomial Chaos Expansions[J]. Journal of Computational Physics, 2016, 321:1144-1169.
[29]LI C C, DER KIUREGHIAN A. Optimal Discretization of Random Fields[J]. Journal of Engineering Mechanics, 1993, 119:1136-1154.
[30]ZHANG H, ZHANG L, XU C, et al. Global Sensitivity Analysis of Mechanical Properties in Hybrid Single Lap Aluminum-CFRP (Plain Woven) Joints Based on Uncertainty Quantification[J]. Composite Structures, 2022, 280:114841.
[31]ZHANG H, ZHANG L, LIU Z, et al. Research in Failure Behaviors of Hybrid Single Lap Aluminum-CFRP(Plain Woven) Joints[J]. Thin-Walled Structures, 2021, 161:107488.
|