China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (01): 2-14,23.DOI: 10.3969/j.issn.1004-132X.2022.01.001
Previous Articles Next Articles
WU Dezhi1;CHEN Zhuo1;HAI Zhenyin1;CHEN Liang2;YE Kun2;WANG Lingyun1;ZHAO Libo3
Online:
2022-01-10
Published:
2022-01-14
吴德志1;陈卓1;海振银1;陈亮2;叶坤2;王凌云1;赵立波3
通讯作者:
赵立波(通信作者),男,1978年生,教授、博士研究生导师。研究方向为微纳制造与先进传感技术。获得国家技术发明二等奖2项、国家科技进步二等奖1项。出版专著2部,发表论文200余篇。E-mail:libozhao@xjtu.edu.cn。
作者简介:
吴德志,男,1977年生,教授、博士研究生导师。研究方向为微纳制造与装备、柔性智能感知技术和软体机器人。发表论文80余篇。E-mail:wdz@xmu.edu.cn。
基金资助:
CLC Number:
WU Dezhi, CHEN Zhuo, HAI Zhenyin, CHEN Liang, YE Kun, WANG Lingyun, ZHAO Libo. Research Progresses of Micro-area Induction Heating Technology in Micro/Nano Systems[J]. China Mechanical Engineering, 2022, 33(01): 2-14,23.
吴德志, 陈卓, 海振银, 陈亮, 叶坤, 王凌云, 赵立波. 微纳系统微区感应加热技术的研究进展[J]. 中国机械工程, 2022, 33(01): 2-14,23.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2022.01.001
[1]王立鼎, 刘冲. 微机电系统科学与技术发展趋势[J]. 大连理工大学学报, 2000, 40(2):140-143. WANG Liding, LIU Chong. Development Trend of MEMS Science and Technology[J]. Journal of Dalian University of Technology, 2000, 40(2):140-143. [2]李旭辉. MEMS发展应用现状[J]. 传感器与微系统, 2006, 25(5):3-5. LI Xuhui. Status of Development and Application of MEMS Technology[J]. Transducer and Microsystem Technologies, 2006, 25(5):3-5. [3]林忠华, 胡国清, 刘文艳, 等. 微机电系统的发展及其应用[J]. 纳米技术与精密工程, 2004, 2(2):39-45. LIN Zhonghua, HU Guoqing, LIU Wenyan, et al. Development and Application of Micro-Electro-Mechanical System[J]. Nanotechnology and Precision Engineering, 2004, 2(2):39-45. [4]李宇杰, 霍曜, 李迪, 等. 微流控技术及其应用与发展[J]. 河北科技大学学报, 2014, 35(1):11-19. LI Yujie, HUO Yao, LI Di, et al. Technology, Application and Development of Microfluidics[J]. Journal of Hebei University of Science and Technology, 2014, 35(1):11-19. [5]沙菁, 侯丽雅, 章维一, 等. 微流体系统驱动技术的研究进展[J]. 微纳电子技术, 2006, 43(12):586-591. SHA Jingjie, HOU Liya, ZHANG Weiyi, et al. Research on the Driving-methods of Micro-fluidic System[J]. MEMS Device & Technology, 2006, 43(12):586-591. [6]方肇伦, 方群. 微流控芯片发展与展望[J]. 现代科学仪器, 2001(4):3-6. FANG Zhaolun, FANG Qun. Developments and Trends of Microfluidic Chip Analytical Systems[J]. Modern Scientific Instruments, 2001(4):3-6. [7]SHANG L, CHENG Y, ZHAO Y. Emerging Droplet Microfluidics[J]. Chemical Reviews, 2017, 117(12):7964-8040. [8]孙宁, 施建华. 感应加热工艺与设备的发展状况及趋势(上)[J]. 金属加工(热加工), 2009(1):26-28. SUN Ning, SHI Jianhua. Development Status and Trend of Induction Heating Technology and Equipment(Part 1)[J]. Machinist Metal Forming, 2009(1):26-28. [9]THOMPSON K, BOOSKE J H, GIANCHANDANI Y, et al. Electromagnetic Induction Heating for Cold Wall Rapid Thermal Processing[C]∥9th International Conference on Advanced Thermal Processing of Semiconductors. Anchorage:IEEE, 2001:190-196. [10]PROTSENKO A, TANAEV A, MAKAROVA I. Induction Heating during Hardening of the Balls Bearings[C]∥2019 ⅩⅪ International Conference Complex Systems:Control and Modeling Problems(CSCMP). Samara:IEEE, 2019:242-244. [11]RODRIGUEZ J I, LEEB S B. Nonresonant and Resonant Frequency-selectable Induction-heating Targets[J]. IEEE Transactions on Industrial Electronics, 2010, 57(9):3095-3108. [12]SARNAGO H, MEDIANO A, LUCIA . High Efficiency AC-AC Power Electronic Converter Applied to Domestic Induction Heating[J]. IEEE Transactions on Power Electronics, 2012, 27(8):3676-3684. [13]EGALON J, CAUX S, MAUSSION P, et al. Multiphase System for Metal Disc Induction Heating:Modeling and RMS Current Control[J]. IEEE Transactions on Industry Applications, 2012, 48(5):1692-1699. [14]LONG N K, CAUX S, KESTELYN X. Resonant Control of Multi-Phase Induction Heating Systems[C]∥IECON 2012 38th Annual Conference on IEEE Industrial Electronics Society. Montreal:IEEE, 2012:3293-3298. [15]HURLEY W, KASSAKIAN J. Induction Heating of Circular Ferromagnetic Plates[J]. IEEE Transactions on Magnetics, 1979, 15(4):1174-1181. [16]XI Y Y, LUO X B, LIU W M, et al. Study on Localized Induction Heating for Wafer Level Packaging[J]. Science China Technological Sciences, 2010, 53(3):800-806. [17]刘文明. 感应局部加热封装技术及其应用研究[D]. 武汉:华中科技大学,2010. LIU Wenming. Localized Induction Heating Packaging and Its Application[D]. Wuhan:Huazhong University of Science and Technology, 2010. [18]HOFMANN C, FROHLICH A, KIMME J, et al. A Novel Method for Mems Wafer-level Packaging:Selective and Rapid Induction Heating for Copper-Tin Slid Bonding[C]∥2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors ⅩⅩⅩⅢ(Transducers & Eurosensors ⅩⅩⅩⅢ). Berlin:IEEE, 2019:277-280, [19]陈明祥. 基于感应加热的MEMS封装技术与应用研究[D]. 武汉:华中科技大学, 2006. CHEN Mingxiang. Research on MEMS Packaging by Induction Heating and Its Applications[D]. Wuhan:Huazhong University of Science and Technology, 2006. [20]YANG H A, WU M, FANG W. Localized Induction Heating Solder Bonding for Wafer Level MEMS Packaging[J]. Journal of Micromechanics and Microengineering, 2004, 15(2):394-399. [21]KNAUF B J, WEBB D P, LIU C, et al. Plastic Packaging Using Low Frequency Induction Heating (LFIH) for Microsystems[C]∥2008 10th Electronics Packaging Technology Conference. Singapore:IEEE, 2008:172-180. [22]HOU Y, LIU B, YANG J, et al. The Design and Realization of Micro Induction Heater for the Thermal Bubble Generation[J]. Micro-Nano Technology ⅩⅤ, 2014, 609:1239-1247. [23]JO W, BAEK S, PARK J. A Wireless Actuating Drug Delivery System[J]. IOP Publishing, 2015, 25(4):45014. [24]BAEK S, YOON Y, JEON H, et al. A Wireless Sequentially Actuated Microvalve System[J]. Journal of Micromechanics and Microengineering, 2013, 23(4):045006. [25]LIU B, YANG J, YANG J, et al. A Thermally Actuated Microvalve Using Paraffin Composite by Induction Heating[J]. Microsystem Technologies, 2019, 25(10):3969-3975. [26]BAEK S, MIN J, PARK J. Wireless Induction Heating in a Microfluidic Device for Cell Lysis[J]. Lab on a Chip, 2010, 10:909-917. [27]SONG Y, YANG Z, LIAO Z, et al. One-step Rapid Preparation of CuO Nanosheets by High Frequency Induction Heating and the Application as Excellent Electrochemical Sensor Based on CuO/MWCNTS for the Detection of Glucose[J]. Materials Research Express, 2019, 6(10):1050b3. [28]WU C, LI F, CHEN W, et al. Electromagnetic Induction Heating for Single Crystal Graphene Growth:Morphology Control by Rapid Heating and Quenching[J]. Scientific Reports, 2015, 5(1):1-7. [29]CHEN M, SONG X, LV Q, et al. Bonding of Carbon Nanotubes onto Microelectrodes by Localized Induction Heating[J]. Sensors and Actuators, A:Physical, 2011, 170(1/2):202-206. [30]OH T S, LEE K Y, LEE Y H, et al. Flip-chip Process Using Heat Transfer from an Induction-Heating Film[J]. Metals and Materials International, 2009, 15(3):479-485. [31]ZHANG Y, NISHIKAWA H. Impact Strength of Sn-Ag-Cu/Cu Solder Bumps Formed by an Induction Heating Method[C]∥2017 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference. Taipei:IEEE, 2017:50-53. [32]张昱, 潘武. MEMS封装技术[J]. 纳米技术与精密工程, 2005, 3(3):194-198. ZHANG Yu, PAN Wu. Packaging Technology for MEMS[J]. Nanotechnology and Precision Engineering, 2005, 3(3):194-198. [33]PETERSEN K, BARTH P, POYDOCK J, et al. Silicon Fusion Bonding for Pressure Sensors[C]∥IEEE Technical Digest on Solid-state Sensor and Actuator Workshop. Hilton:IEEE, 1988:144-147. [34]WEI J, XIE H, NAI M L, et al. Low Temperature Wafer Anodic Bonding[J]. Journal of Micromechanics & Microengineering, 2003, 13(2):217-222. [35]胥超, 徐永青, 杨拥军, 等. Au/Sn共晶键合技术在MEMS封装中的应用[J]. 微纳电子技术, 2014, 51(2):131-135. XU Chao, XUYongqing, YANG Yongjun, et al. Application of the Au/Sn Eutectic Bonding Technology in the Packing of MEMS[J]. Micronanoelectronic Technology, 2014, 51(2):131-135. [36]ZHANG X X, RASKIN J P. Low-temperature Wafer Bonding:A Study of Void Formation And Influence on Bonding Strength[J]. Journal of Microelectromechanical Systems, 2005, 14(2):368-382. [37]LIN L. MEMS Post-packaging by Localized Heating and Bonding[J]. IEEE Transactions on Advanced Packaging, 2000, 23(4):608-616. [38]CLENDENIN J, TUNG S, BUDRAA N, et al. Microwave Bonding of Silicon Dies with Thin Metal Films for MEMS Applications[C]∥53rd Electronic Components and Technology Conference. New Orleans:IEEE, 2003:18-23. [39]WILD M J, GILLNER A, POPRAWE R, et al. Locally Selective Bonding of Silicon and Glass with Laser[J]. Sensors and Actuators A:Physical, 2001, 93(1):63-69. [40]SOSNOWCHIK B D, AZEVEDO R G, MYERS D R, et al. Rapid Silicon-to-steel Bonding by Induction Heating for MEMS Strain Sensors[J]. Journal of Microelectromechanical Systems, 2012, 21(2):497-506. [41]CHEN M, YUAN L, LIU S, et al. Research on Low-temperature Anodic Bonding Using Induction Heating[J]. Sensors and Actuators, A:Physical, 2007, 133(1):266-269. [42]LIU S, LIU W, LIN C, et al. A Novel Ceramic Packaging Technique Using Selective Induction Heating[J]. Journal of Electronic Packaging, 2009, 131(4):041010. [43]SOSNOWCHIK B D, HALL C, LIN L, et al. Rapid Silicon-to-steel Bonding via Inductive Heating[C]∥ASME International Mechanical Engineering Congress and Exposition. Chicago:ASME, 2006:225-231. [44]PENG Y, WANG S, CHENG H, et al. Whole Inorganic Hermetic Packaging Technology Using Localized Induction Heating for Deep Ultraviolet Light-emitting Diodes[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(9):1456-1461. [45]THOMPSON K, GIANCHANDANI Y B, BOOSKE J, et al. Direct Silicon-silicon Bonding by Electromagnetic Induction Heating[J]. Journal of Microelectromechanical Systems, 2002, 11(4):285-292. [46]CHEN M, GAN Z. Selective Induction Heating for Microsystem Packaging[C]∥2006 7th International Conference on Electronic Packaging Technology. Shanghai:IEEE, 2006:1-4. [47]LIU W, CHEN M, XI Y, et al. Thermo-mechanical Analysis of a Wafer Level Packaging by Induction Heating[C]∥Electronic Packaging Technology & High Density Packaging. Shanghai:IEEE, 2008:1-5. [48]CHEN M, LIU W, XI Y, et al. Selective Induction Heating for Wafer Level Bonding and Packaging[C]∥Electronic Components and Technology Conference Proceedings. San Diego:IEEE, 2009:1754-1758. [49]CHEN M, LIU W, XI Y, et al. Wafer Level Bonding Using Localized Radio-frequency Induction Heating[J]. Science China, 2010, 53(5):1252-1257. [50]KNAUF B J, WEBB D P, LIU C, et al. Low Frequency Induction Heating for the Sealing of Plastic Microfluidic Systems[J]. Microfluidics and Nanofluidics, 2010, 9(2/3):243-252. [51]HOU Y, LIU B, YANG J. Research on a Large Power Thermal Bubble Micro-ejector with Induction Heating[J]. Microsystem Technologies, 2016, 22(1):103-108. [52]LIU B, SUN J, LI D, et al. A High Flow Rate Thermal Bubble-driven Micropump with Induction Heating[J]. Microfluidics and Nanofluidics, 2016, 20(11):1-9. [53]LIU B, LI X, YANG X, et al. A New Vaporizing Liquid Microthruster with Planar Induction Heating[J]. Sensors & Actuators:A. Physical, 2020, 308:112010. [54]LIU B, YANG J, ZHANG Z, et al. A Phase Change Microactuator Based on Paraffin Wax/Expanded Graphite/Nickel Particle Composite with Induction Heating[J]. Sensors & Actuators:A. Physical, 2018, 275:129-136. [55]NAN, L, JIANG Z, WEI, X. Emerging Microfluidic Devices for Cell Lysis:a Review[J]. Lab on a Chip, 2014 14(6):1060-1073. [56]ALMASSIAN D R, COCKRELL L M, NELSON W M. Portable Nucleic Acid Thermocyclers[J]. Chemical Society Reviews, 2013, 42(22):8769-8798. [57]PAL D, VENKATARAMAN V. A Portable Battery-operated Chip Thermocycler Based on Induction Heating[J]. Sensors and Actuators, A:Physical, 2002, 102(1/2):151-156. [58]CHEN Q, LU J, ZHANG Z, et al. Growth of Silicon Carbide Bulk Crystals by Physical Vapor Transport Method and Modeling Efforts in the Process Optimization[J]. Journal of Crystal Growth, 2006, 292(2):197-200. [59]YOSHIKAWA T, KAWANISHI S, TANAKA T. Solution Growth of Silicon Carbide Using Fe-Si Solvent[J]. Japanese Journal of Applied Physics, 2010, 49:311-333. [60]SOSNOWCHIK B D, LIN L. Rapid Synthesis of Carbon Nanotubes by Bulk and Localized Inductive Heating[C]∥2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS). Hyogo:IEEE, 2007:835-838. [61]POGACEAN F, BIRIS A R, SOCACI C, et al. Graphene-Bimetallic Nanoparticle Composites with Enhanced Electro-catalytic Detection of Bisphenol A[J]. Nanotechnology, 2016, 27(48):484001. [62]OKAMOTO A, SHINOHARA H. Control of Diameter Distribution of Single-walled Carbon Nanotubes Using the Zeolite-CCVD Method at Atmospheric Pressure[J]. Carbon, 2005, 43(2):431-436. [63]LI Z, ZHAO B, LIU P, et al. Synthesis of High-quality Single-walled Carbon Nanotubes by High-frequency-induction Heating[J]. Physica E:Low-dimensional Systems and Nanostructures, 2008, 40(3):452-456. [64]BIRIS A R, BIRIS A S, LUPU D, et al. Catalyst Excitation by Radio Frequency for Improved Carbon Nanotubes Synthesis[J]. Chemical Physics Letters, 2006, 429(1/3):204-208. [65]BIRIS A R, LUPU D, GRNEIS A, et al. High-quality Double-walled Carbon Nanotubes Grown by a Cold-walled Radio Frequency Chemical Vapor Deposition Process[J]. Chemistry of Materials, 2008, 20(10):3466-3472. [66]SOSNOWCHIK B D, HA J Y, LUO L, et al. Rapid, Localized Synthesis of Titanium-based Nanoswords on MEMS[C]∥2008 IEEE 21st International Conference on Micro Electro Mechanical Systems. Wuhan:IEEE, 2008:693-696. [67]DERVISHI E, LI Z, WATANABE F, et al. Large-Scale Graphene Production by RF-CCVD Method[J]. Chemical Communications, 2009, 27:4061-4063. [68]SHENG I, YAU E, THONG K, et al. The Practicality of TRIZ Based Conceptual Solutions in Solving Tombstoning Defects during SMD Soldering[J]. Chemical Engineering Research & Design, 2015, 103:123-129. [69]LI M, XU H, LEE S R, et al. Eddy Current Induced Heating for the Solder Reflow of Area Array Packages[J]. IEEE Transactions on Advanced Packaging, 2008, 31(2):399-403. [70]XU H, LI M, KIM J. Geometry Control of Solder Interconnects via Induction Heating[J]. Soldering & Surface Mount Technology, 2013, 21(1):25-30. [71]XU H, LI M, KIM J. Local Melt Process of Solder Bumping by Induction Heating Reflow[J]. Soldering & Surface Mount Technology, 2009, 21(4):45-54. [72]HABIB A H, ONDECK M G, MILLER K J, et al. Novel Solder-magnetic Particle Composites and Their Reflow Using AC Magnetic Fields[J]. IEEE Transactions on Magnetics, 2010, 46(6):2187-2190. [73]SEMIATIN S L, ZINN S. Coil Design and Fabrication:Basic Design and Modifications[J]. Heat Treating, 1988, 12(3):32-36. [74]IATCHEVA I, STANCHEVA R, TAHRILOV H, et al. Coupled Electromagnetic-thermal Field Investigation in Induction Heating Device[J]. Solid State Phenomena, 2009, 152/153:407-410. [75]ZGRAJA J. The Optimisation of Induction Heating System Based on Multiquadric Function Approximation[J]. COMPEL—The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2005, 24(1):305-313. [76]SCHULZE M, NIKANOROV A, NACKE B. Hierarchical Shape Optimization of One-sided Transverse Flux Heating Induction Coil[J]. COMPEL—The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2019, 39(1):73-80. [77]PLESHIVTSEVA Y, BALDAN M, POPOV A, et al. Effective Methods for Optimal Design of Induction Coils on Example of Surface Hardening[J]. COMPEL—The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2019, 39(1):90-99. [78]TOOLS M, PROCESSES P, NANO E, et al. Selective Induction Heating of Metallic Microstructures for Wafer-level MEMS Packaging[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, 1:1-8. [79]NISHA, VISHWAS K, SURYANARAYANA K, et al. Modeling and Simulation of Multi Coil Induction Heating System for Semiconductor Wafer Processing[C]∥2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology. Bangalore:IEEE, 2017:588-592. [80]MEI S, WANG Q, HAO M, et al. Theoretical Analysis of Induction Heating in High-temperature Epitaxial Growth System[J]. AIP Advances, 2018, 8(8):085114. [81]LI Z M, HAO Y, ZHANG J C, et al. Thermal Transportation Simulation of a Susceptor Structure with Ring Groove for the Vertical MOCVD Reactor[J]. Journal of Crystal Growth, 2009, 311(23/24):4679-4684. [82]LI Z M, JIANG H Y, HAN Y B, et al. Temperature Uniformity of Wafer on a Large-sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chinese Physics Letters, 2012, 29(3):030701. [83]YANG H A, FANG W. On the Scale Effect of Magnetic Induction Heating for Microstructure[C]∥The 13th International Conference on Solid-state Sensors, Actuators and Microsystems. Seoul:IEEE, 2005:2123-2126. [84]YANG H A, LIN C W, PENG C Y, et al. On the Selective Magnetic Induction Heating of Micron Scale Structures[J]. Journal of Micromechanics and Microengineering, 2006, 16(7):1314-1320. [85]蔺常勇. 圆片级感应局部加热封装技术研究[D]. 武汉:华中科技大学, 2009. LIN Changyong. Research on Wafer Bonding Technology by Localized Induction Heating[D].Wuhan:Huazhong University of Science and Technology, 2009 [86]席炎炎. MEMS感应局部加热封装研究[D]. 武汉:华中科技大学, 2009. XI Yanyan. Research on Induction Local Heating for MEMS Packaging[D]. Wuhan:Huazhong University of Science and Technology, 2009. [87]CHEN J B, LI C, WU Y P, et al. Study on Rapid Thermal Cycling by Inducted Heating for Microstructure of Single SnAgCu Solder Joint[J]. Science & Technology of Welding & Joining, 2013, 17(3):237-243. [88]CHEN J, WAN N, LI J. Effect of Rapid Inducted Heating on the Microstructure of Solder Joint in IC[C]∥2018 19th International Conference on Electronic Packaging Technology. Shanghai:IEEE, 2018:2018-2021. [89]WANG L, XU H, YANG M, et al. Dramatic Morphological Change of Interfacial Prism-type Cu6Sn5 in the Sn3.5Ag/Cu Joints Reflowed by Induction Heating[C]∥2009 International Conference on Electronic Packaging Technology & High Density Packaging. Beijing:IEEE, 2009:843-846. [90]XU H, LI M, KIM J, et al. Study on Induction Spontaneous Heating Reflow[J]. Materials Science Forum, 2008, 580:167-172. [91]YANG M, YANG S, JI H, et al. Microstructure Evolution, Interfacial Reaction and Mechanical Properties of Lead-free Solder Bump Prepared by Induction Heating Method[J]. Journal of Materials Processing Technology, 2016, 236:84-92. [92]王适, 张弘弢, 于宏图, 等. PCD高频感应钎焊模糊控制及同步数据采集系统[J]. 中国机械工程, 2003, 14(1):53-55. WANG Shi, ZHANG Hongtao, YU Hongtu, et al. PCD High-frequency Induction Brazing Fuzzy Control and Synchronous Data Acquisition System[J]. China Mechanical Engineering, 2003, 14(1):53-55. |
[1] | XIAO Gang, ZHANG Bin, LI Shichun, YAN Huijun, YANG Qinwen. Design and Service Performance Optimization of Induction Heating Methanol Reforming Devices Based on Fluid Pressure Drop Control [J]. China Mechanical Engineering, 2023, 34(17): 2048-2057,2076. |
[2] | LIU Huifang;XU Haotian;GAO Quanxiang;QIAO Kaiqing . Analysis of Influence Factors and Laws of Micro Dispensing Method Based on Surface Tensions [J]. China Mechanical Engineering, 2020, 31(09): 1057-1064,1073. |
[3] | ZHOU Hongming;PENG Jiaojiao;ZHANG Xianglei;WANG Sufen. Operation Parameter Optimization of Packaging Production Lines under Reliability Constraints [J]. China Mechanical Engineering, 2019, 30(11): 1352-1358. |
[4] | LIU Gui-Ping, XUE Jing-Jing. Design and Optimization of a New Type of Mechanism with Specific Trajectory and Gesture Based on Micro-genetic Algorithm [J]. China Mechanical Engineering, 2013, 24(6): 736-741. |
[5] | JIANG Meng-Xia, WANG Lei, TANG Ji-Ying. #br# Bonding Effects on Stability of Structures in MEMS [J]. China Mechanical Engineering, 2012, 23(18): 2155-2159. |
[6] |
YIN Yan-Guo, SHU Jian-Wei, WANG Yong-Guo, JIE Ting, TIAN Meng, SONG Beng.
Simulation Analysis of Temperature Field in Induction-heating Warm Compaction Mold by Finite Element Method
[J]. China Mechanical Engineering, 2011, 22(5): 611-615.
|
[7] |
SUN Dao-Heng, GAO Dun-Chuan, DU Jiang, JIANG Yi-Wen, DAO,WEI,WANG Ling-Yun.
Advances in Fluid Dispensing Technology for Micro-electronics Packaging
[J]. China Mechanical Engineering, 2011, 22(20): 2513-2519.
|
[8] | Liu Chong;Li Miaomiao;Liang Junsheng;Zhu Yingli;Sun Lingjun,Wang Liding. Development of Some Key Technologies for Micro Direct Methanol Fuel Cell [J]. J4, 2009, 20(22): 0-2771. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||