[1]YANG F, YIN S M, LI S X, et al. Crack Initiation Mechanism of Extruded AZ31 Magnesium Alloy in the Very High Cycle Fatigue Regime [J]. Materials Science and Engineering: A, 2008, 491(1/2):131-136.
[2]YU D L, ZHANG D F, SUN J, et al. High Cycle Fatigue Behavior of Extruded and Double-aged Mg-6Zn-1Mn Alloy [J]. Materials Science and Engineering: A, 2016, 662: 1-8.
[3]WANG C, LUO T J, YANG Y S. Low Cycle Fatigue Behavior of the Extruded AZ80 Magnesium Alloy under Different Strain Amplitudes and Strain Rates [J]. Journal of Magnesium and Alloys, 2016, 4(3):181-187.
[4]PENG L M, FU P H, LI Z M, et al. High Cycle Fatigue Behaviors of Low Pressure Cast Mg-3Nd-0.2Zn-2Zr Alloys [J]. Materials Science and Engineering: A, 2014, 611(9):170-176.
[5]LI H Z, LV F, XIAO Z Y, et al. Low-cycle Fatigue Behavior of a Cast Mg-Y-Nd-Zr Alloy by T6 Heat Treatment [J]. Materials Science and Engineering: A, 2016, 676:377-384.
[6]张思倩, 吴伟, 陈丽丽, 等. 热处理对挤压变形Mg-7%Zn-0.6%Zr-0.5%Y合金低周疲劳行为的影响[J]. 金属学报, 2014, 50(6):700-706.
ZHANG Siqian, WU Wei, CHEN Lili, et al. Influence of Heat Treatment on Low-cycle Fatigue Behavior of Extruded Mg-7%Zn-0.6%Zr-0.5%Y Alloy [J]. Acta Metallurgica Sinica, 2014, 50(6):700-706.
[7]LIN Y C, CHEN X M, LIU Z H, et al. Investigation of Uniaxial Low-cycle Fatigue Failure Behavior of Hot-rolled AZ91 Magnesium Alloy [J]. International Journal of Fatigue, 2013, 48:122-132.
[8]CHEN X M, LIN Y C, CHEN J. Low-cycle Fatigue Behaviors of Hot-rolled AZ91 Magnesium Alloy under Asymmetrical Stress-controlled Cyclic Loadings [J]. Journal of Alloys and Compounds, 2013, 579(31): 540-548.
[9]LIN Y C, CHEN X M, CHEN G. Uniaxial Ratcheting and Low-cycle Fatigue Failure Behaviors of AZ91D Magnesium Alloy under Cyclic Tension Deformation [J]. Journal of Alloys and Compounds, 2011, 509(24):6838-6843.
[10]LIN Y C, LIU Z H, CHEN X M, et al. Uniaxial Ratcheting and Fatigue Failure Behaviors of Hot-rolled AZ31B Magnesium Alloy under Asymmetrical Cyclic Stress-controlled Loadings [J]. Materials Science and Engineering: A, 2013, 573(3):234-244.
[11]HASEGAWA S, TSUCHIDA Y, YANO H, et al. Evaluation of Low Cycle Fatigue Life in AZ31 Magnesium Alloy [J]. International Journal of Fatigue, 2007, 29(9/11):1839-1845.
[12]YU Q, ZHANG J, JIANG Y Y, et al. Effect of Strain Ratio on Cyclic Deformation and Fatigue of Extruded AZ61A Magnesium Alloy [J]. International Journal of Fatigue, 2012, 44(9):225-233.
[13]LIN Y C, LIU Z H, CHEN X M, et al. Stress-based Fatigue Life Prediction Models for AZ31B Magnesium Alloy under Single-step and Multi-step Asymmetric Stress-controlled Cyclic Loadings [J]. Computational Materials Science, 2013, 73(6):128-138.
[14]MIROSLAVA H, JOSEF Z, PAVEL D, et al. Evaluation of Fatigue Life of AZ31 Magnesium Alloy Fabricated by Squeeze Casting [J]. Materials and Design, 2013, 45: 253-264.
[15]陈凌, 张贤明, 刘飞, 等. 镁合金低周疲劳寿命预测模型探讨[J]. 中国机械工程, 2017, 28(5):512-518.
CHEN Ling, ZHANG Xianming, LIU Fei, et al. Discussion of Low Cycle Fatigue Life Prediction Models for Magnesium Alloys [J]. China Mechanical Engineering, 2017, 28(5):512-518.
[16]陈凌. 典型压力容器用钢中高温环境低周疲劳和疲劳蠕变交互作用的行为及寿命评估技术研究[D]. 杭州: 浙江大学, 2007.
CHEN Ling. Research on Behavior and Life Assessments of Low Cycle Fatigue and Fatigue-creep Interaction for Typical Pressure Vessel Steels at Elevated and High Temperature [D]. Hangzhou: Zhejiang University, 2007.
[17]陈凌, 张贤明, 欧阳平. 一种基于连续损伤力学的低周疲劳寿命预测模型[J]. 中国机械工程, 2015, 26(18): 2506-2510.
CHEN Ling, ZHANG Xianming, OUYANG Ping. A Life Prediction Model for Low Cycle Fatigue Based on Continuum Damage Mechanics [J]. China Mechanical Engineering, 2015, 26(18): 2506-2510.
[18]中国国家标准化管理委员会. GB/T 15248-2008 金属材料轴向等幅低循环疲劳试验方法[S]. 北京: 中国标准出版社, 2008.
Standardization Administration of China. GB/T 15248-2008 The Test Method for Axial Loading Constant-amplitude Low-cycle Fatigue of Metallic Materials [S]. Beijing: Standards Press of China, 2008. |