1.Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University of Technology,Wuhan,430070
2.Hubei Collaborative Innovation Center for Automotive Components Technology,Wuhan,430070
3.School of Automotive Engineering,Wuhan University of Technology,Wuhan,430070
[1]KACHACH R, CANAS J M. Hybrid Three-dimensional and Support Vector Machine Approach for Automatic Vehicle Tracking and Classification Using a Single Camera [J].Journal of Electronic Imaging, 2016, 25(3):24.
[2]FELZENSZWALB P, MCALLESTER D, RAMANAN D. A Discriminatively Trained, Multiscale, Deformable Part Model[C]//Computer Vision and Pattern Recognition. Boston: IEEE, 2008:1-8.
[3]FELZENSZWALB P, GIRSHICK R B, MCALLESTER D, et al. Object Detection with Discriminatively Trained Part-based Models [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1627-1645.
[4]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet Classification with Deep Convolutional Neural Networks[C]//International Conference on Neural Information Processing Systems. USA: Curran Associates, 2012:1097-1105.
[5]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]//Computer Vision and Pattern Recognition. Boston: IEEE, 2013:580-587.
[6]UIJLINGS J R, van de SANDE K E, GEVERS T, et al. Selective Search for Object Recognition[C]//International Journal of Computer Vision. Hawaii: IJCV Press, 2013: 115-117.
[7]HE K, ZHANG X, REN S, et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
[8]GIRSHICK R. Fast R-CNN [C]//IEEE International Conference on Computer Vision. Santiago: IEEE, 2015:10-15.
[9]REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[10]DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: Object Detection via Region-based Fully Convolutional Networks [EB/OL]. Ithaca, New York: Cornell University Library, 2016 [2017-11-01]. https://arxiv.org/abs/1605.06409.
[11]REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: Unified, Real-time Object Detection[C]// Computer Vision and Pattern Recognition. Boston: IEEE, 2016:779-788.
[12]LIU W,ANGUELOV D,ERHAN D,et al. SSD: Single Shot MultiBox Detector [EB/OL]. Ithaca, New York: Cornell University Library, 2015 [2017-11-1]. https://arxiv.org/abs/1512.02325.
[13]REDMON J, FARHADI A. YOLO9000: Better, Faster, Stronger [EB/OL]. Ithaca, New York: Cornell University Library, 2016 [2017-11-01]. https://arxiv.org/abs/1612.08242.
[14]ZHANG J, HUANG M, JIN X, et al. A Real-time Chinese Traffic Sign Detection Algorithm Based on Modified YOLO_v2 [J]. Algorithms, 2017, 10(4):127-139.
[15]JO K U,IM J H, KIM J,et al. A Real-time Multi-class Multi-object Tracker Using YOLO_v2[C]//IEEE International Conference on Signal and Image Processing Applications. Beijing:IEEE, 2017:507-511.
[16]SEO C J. The Study of Car Detection on the Highway Using YOLO_v2 and UAVs [J]. Transaction of the Korean Institute of Electrical Engineers P, 2018, 9(4):67-73.
[17]魏湧明,全吉成,侯宇青阳.基于YOLO_v2的无人机航拍图像定位研究[J].激光与光电子学进展,2017, 54(11):95-104.
WEI Yongming, QUAN Jicheng, Hou Yuqing- yang. Research on Aerial Image Positioning of UAV Based on YOLO_v2 [J].Progress in Laser and Optoelectronics, 2017, 54(11):95-104.
[18]王宇宁,庞智恒,袁德明.基于YOLO算法的车辆实时检测[J].武汉理工大学学报,2016,38(10):41-46.
WANG Yuning, PANG Zhiheng, YUAN Deming. Vehicle Detection Based on YOLO in Real Time [J]. Journal of Wuhan University of Technology, 2016, 38(10):41-46.
[19]NEUBECK A, GOOL L V. Efficient Non-maximum Suppression[C]//18th International Conference on Pattern Recognition. Hong Kong, 2006:850-855.