[1]Chen Z S, Hofstetter G, Mang H A. A Symmetric Galerkin Formulation of the Boundary Element Method for Acoustic Radiation and Scattering [J]. J. Comput. Acoust. , 1997, 5(2): 219-241.
[2]Schenck H A. Improved Integral Formulation for Acoustic Radiation Problems[J]. J. Acoust. Soc. Am. , 1968, 44(1):41-48.
[3]Rokhlin V. Rapid Solution of Integral Equations of Scattering Theory in Two Dimensional[J]. J. Corn- put. Phys. , 1990, 86: 414-439.
[4]Rokhlin V. Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions[J]. Appl. Comput. Harm. Anal., 1993,1(1): 82-93.
[5]Gumerov N A, Duraiswami R A. Broadband Fast Multipole Accelerated Boundary Element Method for the Three Dimensional Helmholtz Equation[J]. J. Acoust. Soc. Am., 2009,125(1):191-205.
[6]Wu H J, Liu Y J, Jiang tion of the Moments in W K. Analytical Integra- the Diagonal Form Fast Multipole Boundary Element Method for 3- D Acoustic Wave Problems[J]. Eng. Anal. Bound. Elem. , 2012,36: 248-254.
[7]Seybert A F, Soenarko B. Radiation and Scattering of Acoustic Waves From Bodies of Arbitrary Shape in a Three- dimension Half Space[J]. ASME Trans. J. Vib. Acoust. Stress Reliab. Des. , 1988, 110: 112-117.
[8]Burton A J, Miller G F. The Application of the In tegral Equation Methods to the Numerical Solution of Some Exterior Boundary-value Prohlems[J]. Proc. Roy. Soc. London, 1971, A323: 201-210.
[9]Labreuche C. A Convergence Theorem for the Fast Multipole Method for 2 Dimensional Scattering Problems[J]. Math. Comput. , 1998, 67:553-591.
[10]Bapat M S, Liu Y J. A New Adaptive Algorithm for the Fast Multipole Boundary Elements Method[J]. CMES-Comp. Model Eng. , 2010,58:161-183.
[11]Coifman R, Rokhlin V, Wandzura S. The Fast Multipole Method for the Wave Equation: a Pe- destrian Prescription[J]. IEEE Antennas Propa- gation Mag. , 1993,35(3) :7-12.
[12]Gyure M F, Stalzer M A. A Prescription for the Multilevel Helmholtz FMM[J]. IEEE Comput. Sci. Eng., 1998, 5(3):39-47. |