[1]华林, 魏鹏飞, 胡志力. 高强轻质材料绿色智能成形技术与应用[J]. 中国机械工程, 2020, 31(22):2753-2762.
HUA Lin, WEI Pengfei, HU Zhili. Green and Intelligent Forming Technology and Its Applications for High Strength Lightweight Materials[J]. China Mechanical Engineering, 2020, 31(22):2753-2762.
[2]李勇, 李东升, 李小强. 大型复杂壁板构件塑性成形技术研究与应用进展[J]. 航空制造技术, 2020, 63(21):36-45.
LI Yong, LI Dongsheng, LI Xiaoqiang. A Review of Plastic Forming Technologies and Applications for Large and Complex-shaped Panels[J]. Aeronautical Manufacturing Technology, 2020, 63(21):36-45.
[3]张丽娇. 航空航天高强铝合金材料应用及发展趋势研究[J]. 新材料产业, 2021(3):7-11.
ZHANG Lijiao. Research on the Application and Development Trends of High Strength Aluminum Alloy Materials in Aerospace[J]. Advanced Materials Industry, 2021(3):7-11.
[4]唐天宇,黄亮,徐佳辉,等. 2219铝合金高应变速率本构模型及其电磁成形应用评估[J]. 锻压技术, 2024, 49(5):125-134.
TANG Tianyu, HUANG Liang, XU Jiahui, et al. High Strain Rate Constitutive Model and Electromagnetic Forming Application Evaluation for 2219 Aluminum Alloy[J]. Forging & Stamping Technology, 2024, 49(5):125-134.
[5]LIU Z S, YU Y Y, YANG Z, et al. Dynamic Experimental Studies of A6N01S-T5 Aluminum Alloy Material and Structure for High-speed Trains[J]. Acta Mechanical Sinica, 2019, 35(4):763-772.
[6]ZHANG F F, HE K, ZHENG L, et al. Strain-rate Effect on Anisotropic Deformation Characterization and Material Modeling of High-strength Aluminum Alloy Sheet[J]. Metals, 2022, 12:1430.
[7]SHAMCHI S P, DEMELO FJMQ, TAVARES P J, et al. Thermomechanical Characterization of Alclad AA2024-T3 Aluminum Alloy Using Split Hopkinson Tension Bar[J]. Mechanics of Materials, 2019, 139:103198.
[8]马彦. 复杂薄壁铝合金零件冲击液压成形技术与设备研究[D]. 大连:大连理工大学,2018.
MA Yan. Investigation of Impact Hydroforming Technology and Equipment for Complex Thin-wall Aluminium Alloys Part[D]. Dalian:Dalian University of Technology, 2018.
[9]ZHENG Q L, YU H P, CAI X H. Formability and Deformation Behavior of DP600 Steel Sheets during a Hybrid Quasi-static/Dynamic Forming Process[J]. International Journal of Advanced Manufacturing Technology, 2020, 7/8:2169-2180.
[10]YU H P, ZHENG Q L. Plasticity Enhancement Mechanism of DP600 Steel Sheets during Uniaxial Quasi-Static/Dynamic Forming[J]. Journal of Materials Processing Technology, 2021, 294:117138.
[11]刘大海,周文华,李春峰,等. U形件磁脉冲辅助弯曲回弹控制及变形分析[J]. 中国有色金属学报,2013,23(11):3075-3082.
LIU Dahai, ZHOU Wenhua, LI Chunfeng, et al. Springback Control and Deformation Analysis for Electromagnetically Assisted Bending of U-shaped Parts[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(11):3075-3082.
[12]CUI X H, YU H L, WANG Q S. Electromagnetic Impulse Calibration in V-shaped Parts[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/8):2959-2968.
[13]CUI X H, ZHANG Z W, DU Z H, et al. Inverse Bending and Springback-control Using Magnetic Pulse Forming[J]. Journal of Materials Processing Technology, 2020, 275:116374.
[14]DU Z H, YAN Z Q, CUI X H, et al. Springback Control and Large Skin Manufacturing by High Speed Vibration Using Electromagnetic Forming[J]. Journal of Materials Processing Technology, 2022, 299:117340.
[15]GOLOVASHCHENKO S F. Springback Calibration Using Pulsed Electromagnetic Field[C]∥Proceedings of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process. Detroit, 2014, 77:284-285.
[16]张士宏,程明,宋鸿武,等. 航空航天复杂曲面构件精密成形技术的研究进展[J].南京航空航天大学学报,2020,52(1):1-11.
ZHANG Shihong, CHENG Ming, SONG Hongwu, et al. Research Progress on Precision Forming Technology for Complex Curved Surface Components in Aerospace[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(1):1-11.
[17]徐勇,张士宏,马彦,等. 新型液压成形技术的研究进展[J].精密成形工程,2016,8(5):7-14.
XU Yong, ZHANG Shihong, MA Yan, et al. Hydroforming Technology:State-of-arts and Recent Developments[J]. Journal of Netshape Forming Engineering, 2016, 8(5):7-14.
[18]MA Y, XU Y, ZHANG S H, et al. Investigation on Formability Enhancement of 5A06 Aluminium Sheet by Impact Hydroforming[J]. CIRP Annals—Manufacturing Technology, 2018, 67(1):281-284.
[19]CHEN D Y, XU Y, ZHANG S H, et al. A Novel Method to Evaluate the High Strain Rate Formability of Sheet Metals under Impact Hydroforming[J]. Journal of Materials Processing Technology, 2021, 287:116553.
[20]马彦, 陈大勇, 徐勇,等. 高能率冲击液压成形设备设计及复杂铝合金零件成形[J]. 兵器装备工程学报, 2023, 44(10):65-71.
MA Yan, CHEN Dayong, XU Yong, et al. A Novel Impact Hydroforming Press for Forming Aviation Complex Thin-wall Aluminum Sheet Metal Part[J]. Journal of Ordnance Equipment Engineering, 2023, 44(10):65-71.
[21]徐勇, 尹阔, 夏亮亮,等. 面向航空铝合金薄壁深腔构件的冲击液压成形工艺优化[J]. 航空学报, 2021, 42(10):358-369.
XU Yong, YIN Kuo, XIA Liangliang, et al. Optimization of Impact Hydroforming Process for Aeronautical Aluminum Alloy Thin Wall and Deep Cavity Components[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):358-369.
[22]EL-ATY A A, XU Y, ZHANG S H, et al. Impact of High Strain Rate Deformation on the Mechanical Behavior, Fracture Mechanisms and Anisotropic Response of 2060 Al-Cu-Li Alloy[J]. Journal of Advanced Research, 2019, 18:19-37.
[23]XU Y, XIA L L, El-Aty A A, et al. Revealing the Dynamic Behavior and Micromechanisms of Enhancing the Formability of AA1060 Sheets under High Strain Rate Deformation[J]. Journal of Materials Research and Technology, 2023, 28:2402-2409.
[24]夏亮亮. AA2024铝合金板材冲击液压成形特性及增塑降弹机制研究[D]. 合肥:中国科学技术大学, 2022.
XIA Liangliang.Study on Impact Hydroforming Characteristics and Mechanisms of Formability Improvement and Springback Reduction for AA2024 Aluminum Alloy Sheets[D]. Hefei:University of Science and Technology of China, 2022.
|