[1]郑圆圆, 王井, 何冰, 等. 液压缸活塞杆表面高速激光熔覆涂层高效后处理技术研究[J]. 液压气动与密封, 2022, 42(12):101-106.
ZHENG Yuanyuan, WANG Jing, HE Bing, et al. Study on High Efficiency Post-treatment Technology of High Speed Laser Cladding Coating on Piston Rod Surface of Hydraulic Cylinder[J]. Hydraulics Pneumatics & Seals, 2022, 42(12):101-106.
[2]张强, 郭彦斌, 张卫东, 等. 浅谈海工重载升降液压缸的设计与工艺关键技术[J]. 工程机械, 2023, 54(12):130-134.
ZHANG Qiang, GUO Yanbin, ZHANG Weidong, et al. Discussion on Key Technologies of Design and Process of Heavy-duty Hydraulic Jacking Cylinders in Ocean Projects[J]. Construction Machinery and Equipment, 2023, 54(12):130-134.
[3]张磊, 陈小明, 张凯, 等. 沿海水闸活塞杆表面激光熔覆Ni基涂层组织及其抗磨耐蚀性能[J]. 材料保护, 2019, 52(11):17-22.
ZHANG Lei, CHEN Xiaoming, ZHANG Kai, et al. Microstructure and Wear/Corrosion Resistance of Laser Cladding Ni-based Coating on Hydraulic Piston Rod for Coastal Sluice[J]. Materials Protection, 2019, 52(11):17-22.
[4]王博, 陈秋旭, 刘鸿喜, 等. 热喷涂技术提高活塞杆耐磨和耐腐蚀的方法[J]. 液压气动与密封, 2013, 33(10):59-61.
WANG Bo, CHEN Qiuxu, LIU Hongxi, et al. Method to Improve the Wear and Corrosion Resistance of Piston Rods by Thermal Spray[J]. Hydraulics Pneumatics & Seals, 2013, 33(10):59-61.
[5]HOUDKOV , ZAHLKA F, KAPAROV M, et al. Comparative Study of Thermally Sprayed Coatings under Different Types of Wear Conditions for Hard Chromium Replacement[J]. Tribology Letters, 2011, 43(2):139-154.
[6]BOLELLI G. Replacement of Hard Chromium Plating by Thermal Spraying—Problems, Solutions and Possible Future Approaches[J]. Surface Engineering, 2009, 25(4):263-269.
[7]赵晋斌, 赵起越, 陈林恒, 等. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6):504-510.
ZHAO Jinbin, ZHAO Qiyue, CHEN Linheng, et al. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(6):504-510.
[8]PIOLA R, ANG A S M, LEIGH M, et al. A Comparison of the Antifouling Performance of Air Plasma Spray (APS) Ceramic and High Velocity Oxygen Fuel (HVOF) Coatings for Use in Marine Hydraulic Applications[J]. Biofouling, 2018, 34(5):479-491.
[9]周嘉利, 程延海, 陈永雄, 等. 激光熔覆工艺参数对铁基双层涂层组织和残余应力的影响[J]. 中国机械工程, 2022, 33(12):1418-1426.
ZHOU Jiali, CHENG Yanhai, CHEN Yongxiong, et al. Effects of Laser Cladding Process Parameters on Microstructure and Residual Stresses of Fe-based Double Layer Coatings[J]. China Mechanical Engineering, 2022, 33(12):1418-1426.
[10]YUAN Wuyan, LI Ruifeng, CHEN Zhaohui, et al. A Comparative Study on Microstructure and Properties of Traditional Laser Cladding and High-speed Laser Cladding of Ni45 Alloy Coatings[J]. Surface and Coatings Technology, 2021, 405:126582.
[11]陈书楠, 娄丽艳, 纪纲, 等. 超高速与常规激光熔覆Fe基涂层微观组织及性能研究[J]. 表面技术, 2022, 51(12):358-370.
CHEN Shunan, LOU Liyan, JI Gang, et al. Microstructure and Properties of Fe-based Alloy Prepared by Ultra-high Speed Laser Cladding and Conventional Laser Cladding[J]. Surface Technology, 2022, 51(12):358-370.
[12]李云峰, 石岩. 脉冲频率对激光熔覆层微观组织与性能的影响[J]. 中国机械工程, 2021, 32(17):2108-2117.
LI Yunfeng, SHI Yan. Influences of Pulse Frequency on Microstructure and Properties in Laser Cladding Layers[J]. China Mechanical Engineering, 2021, 32(17):2108-2117.
[13]XU X , DU J L , LUO K Y ,et al. Microstructural Features and Corrosion Behavior of Fe-based Coatings Prepared by an Integrated Process of Extreme High-speed Laser Additive Manufacturing[J]. Surface and Coatings Technology, 2021:127500.
[14]MENG Li, SHENG Peihao, ZENG Xiaoyan. Comparative Studies on the Ni60 Coatings Deposited by Conventional and Induction Heating Assisted Extreme-high-speed Laser Cladding Technology:Formability, Microstructure and Hardness[J]. Journal of Materials Research and Technology, 2022, 16:1732-1746.
[15]HEMMATI I, OCELK V, de HOSSON J T M. The Effect of Cladding Speed on Phase Constitution and Properties of AISI 431 Stainless Steel Laser Deposited Coatings[J]. Surface and Coatings Technology, 2011, 205(21/22):5235-5239.
[16]崔陆军, 于计划, 郭士锐, 等. Mo对铁基合金激光熔覆层组织与性能的影响[J]. 煤矿机械, 2020, 41(1):66-68.
CUI Lujun, YU Jihua, GUO Shirui, et al. Effect of Mo on Microstructure and Properties of Laser Cladding Ironbased Alloy Coating[J]. Coal Mine Machinery, 2020, 41(1):66-68.
[17]宗琳, 周建, 杨洋, 等. Mo元素对Fe-Cr-Mo-C堆焊合金组织和性能的影响[J]. 焊接技术, 2021, 50(3):15-18.
ZONG Lin, ZHOU Jian, YANG Yang, et al. Effect of Mo on the Microstructure and Properties of Fe-Cr-Mo-C Hardfacing Layers[J]. Welding Technology, 2021, 50(3):15-18.
[18]ZHU Hongmei, LI Yongzuo, LI Baichun, et al. Effects of Low-temperature Tempering on Microstructure and Properties of the Laser-cladded AISI 420 Martensitic Stainless Steel Coating[J]. Coatings, 2018, 8(12):451.
[19]朱红梅, 胡文锋, 李勇作, 等. 回火温度对马氏体不锈钢激光熔覆层组织和性能的影响[J]. 中国激光, 2019, 46(12):54-61.
ZHU Hongmei, HU Wenfeng, LI Yongzuo, et al. Effect of Tempering Temperature on Microstructure and Properties of Laser-cladded Martensitic Stainless Steel Layer[J]. Chinese Journal of Lasers, 2019, 46(12):54-61.
[20]王建刚, 李壮, 黄风山, 等. Mo含量对铁基熔覆层组织及性能的影响[J]. 河北科技大学学报, 2022, 43(3):319-327.
WANG Jiangang, LI Zhuang, HUANG Fengshan, et al. Effect of Mo Content on Microstructure and Properties of Iron-based Cladding Layer[J]. Journal of Hebei University of Science and Technology, 2022, 43(3):319-327.
[21]李明喜, 修俊杰, 赵庆宇, 等. 钼对钴基合金激光熔覆层组织与耐磨性的影响[J]. 焊接学报, 2009, 30(11):17-20.
LI Mingxi, XIU Junjie, ZHAO Qingyu, et al. Effect of Mo Content on Microstructure and Wear Resistance of Co-based Coatings by Laser Cladding[J]. Transactions of the China Welding Institution, 2009, 30(11):17-20.
[22]李俐群, 申发明, 周远东, 等. 超高速激光熔覆与常规激光熔覆431不锈钢涂层微观组织和耐蚀性的对比[J]. 中国激光, 2019, 46(10):166-175.
LI Liqun, SHEN Faming, ZHOU Yuandong, et al. Comparison of Microstructure and Corrosion Resistance of 431 Stainless Steel Coatings Prepared by Extreme High-speed Laser Cladding and Conventional Laser Cladding[J]. Chinese Journal of Lasers, 2019, 46(10):166-175.
[23]GREENWOOD J A, WILLIAMSON J B P. Contact of Nominally Flat Surfaces[J]. Proceedings of the Royal Society of London Series A, 1966, 295(1442):300-319.
[24]HUTCHINGS I M, SHIPWAY P. Tribology:Friction and Wear of Engineering Materials[M]. 2nd ed. Butterworth-Heinemann:Oxford, 2017.
[25]赵高敏, 王昆林, 刘家浚. La2O3对激光熔覆铁基合金层硬度及其分布的影响[J]. 金属学报, 2004, 40(10):1115-1120.
ZHAO Gaomin, WANG Kunlin, LIU Jiajun. Effect of La2O3 on Hardness Distributions of Laser Clad ferrite-based Alloy Coatings[J]. Acta Metallrugica Sinica, 2004, 40(10):1115-1120.
[26]刘志威, 魏祥, 汪力, 等. 超高速激光熔覆Fe-Cr-B基耐磨涂层工艺优化及性能研究[J]. 矿冶工程, 2023, 43(5):169-173.
LIU Zhiwei, WEI Xiang, WANG Li, et al. Process Optimization and Property Investigation for Ultra-high-speed Laser Cladded Fe-Cr-B Based Wear-resistant Coating[J]. Mining and Metallurgical Engineering, 2023, 43(5):169-173.
[27]CANEDA C M, GARGARELLA P, RIVA R, et al. Advanced Characterization of Bulk Alloy and In-situ Debris Nanoparticles Formed during Wear of Fe-Nb-B Ultrafine Eutectic Laser Cladding Coatings[J]. Journal of Materials Research and Technology, 2023, 23:3455-3469.
[28]ZHAO Yue, LI Ruifeng, WU Mingfang, et al. Effect of C-BN on the Microstructure and High Temperature Wear Resistance of Laser Cladded Ni-based Composite Coating[J]. Surface and Coatings Technology, 2021, 421:127466.
|