[1]SINGHOSE W E, PORTER L J, TUTTLE T D, et al. Vibration Reduction Using Multi-hump Input Shapers[J]. Journal of Dynamic Systems, Measurement, and Control, 1997, 119(2):320-326.
[2]SINGHOSE W E, PORTER L J, SEERING W P. Input Shaped Control of a Planar Gantry Crane with Hoisting[C]∥Proceedings of the 1997 American Control Conference. Albuquerque, 2002:97-100.
[3]SINGHOSE W E. Command Generation for Flexible Systems[D]. Cambridge:MIT, 1997.
[4]陈志梅, 孟文俊. 龙门起重机的模糊滑模定位与防摆控制[J]. 中国机械工程, 2012, 23(3):310-314.
CHEN Zhimei, MENG Wenjun. Fuzzy Sliding Mode Positioning and Anti-swing Control for Gantry Crane[J]. China Mechanical Engineering, 2012, 23(3):310-314.
[5]GUO Qihang, CHAI Lin, LIU Huikang. Anti-swing Sliding Mode Control of Three-dimensional Double Pendulum Overhead Cranes Based on Extended State Observer[J]. Nonlinear Dynamics, 2023, 111(1):391-410.
[6]邱泽昊, 孙宁, 刘卓清, 等. 双桅杆式起重机的时变输入整形控制方法[J]. 控制理论与应用, 2023, 40(8):1509-1518.
QIU Zehao, SUN Ning, LIU Zhuoqing, et al. Time-varying Input Shaping Control for Dual Boom Cranes[J]. Control Theory & Applications, 2023, 40(8):1509-1518.
[7]HENRY R J, MASOUD Z N, NAYFEH A H, et al. Cargo Pendulation Reduction on Ship-mounted Cranes via Boom-luff Angle Actuation[J]. Journal of Vibration and Control, 2001, 7(8):1253-1264.
[8]王鹏程, 方勇纯, 相吉磊, 等. 回转旋臂式船用起重机的动力学分析与建模[J]. 机械工程学报, 2011, 47(20):34-40.
WANG Pengcheng, FANG Yongchun, XIANG Jilei, et al. Dynamics Analysis and Modeling of Ship-mounted Boom Crane[J]. Journal of Mechanical Engineering, 2011, 47(20):34-40.
[9]SUN Ning, WU Yiming, LIANG Xiao, et al. Nonlinear Stable Transportation Control for Double-pendulum Shipboard Cranes with Ship-motion-induced Disturbances[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12):9467-9479.
[10]孙宁, 张建一, 吴易鸣, 等. 一种双摆效应桥式起重机光滑鲁棒控制方法[J]. 振动与冲击, 2019, 38(22):1-6.
SUN Ning, ZHANG Jianyi, WU Yiming, et al. Continuous Robust Control for Double-pendulum Overhead Cranes[J]. Journal of Vibration and Shock, 2019, 38(22):1-6.
[11]SUN Ning, WU Yiming, FANG Yongchun, et al. Nonlinear Antiswing Control for Crane Systems with Double-pendulum Swing Effects and Uncertain Parameters:Design and Experiments[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15(3):1413-1422.
[12]MARTIN I A, IRANI R A. Evaluation of Both Linear and Non-linear Control Strategies for a Shipboard Marine Gantry Crane[C]∥OCEANS 2019 MTS/IEEE SEATTLE. Singapore, 2019:1-10.
[13]YUAN G H, HUNT B R, GREBOGI C, et al. Design and Control of Shipboard Cranes[C]∥Proceedings of ASME 1997 Design Engineering Technical Conferences. Sacramento, 2021:DETC97/VIB-4095, V01DT22A002.
[14]PARKER G, GRAZIANO M, LEBAN F, et al. ReducingCrane Payload Swing Using a Rider Block Tagline Control System[C]∥OCEANS 2007-Europe. Aberdeen, 2007:10.1109/OCEANSE.2007.4302399.
[15]KU N K, CHA J H, ROH M I, et al. A Tagline Proportional–derivative Control Method for the Anti-swing Motion of a Heavy Load Suspended by a Floating Crane in Waves[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 2013, 227(4):357-366.
[16]STIANSEN S G, SHIN V S, SHARK G. Development of a New Stability Criteria for Mobile Offshore Drilling Units[C]∥Offshore Technology Conference. Houston, 1988:OTC-5802-MS.
[17]FOSSEN T I. Guidance Control of Ocean Vehicles[M]. Hoboken:John Wiley & Sons, Inc., 2016.
[18]JIN Y P, WAN B Y, LIU D S, et al. Dynamic Analysis of the Umbilical Cable for Launcha Recovery System of Seafloor Drill[C]∥Proceedings of the 2015 International Conference on Industrial Technology and Management Science. Paris, 2015:10.2991/itms-15.2015.382.
|