[1]PANKAJ C, PRAKASH R. A Review on Recent Developments in Vibration-based Damage Identification Methods for Laminated Composite Structures:2010—2022[J]. Composite Structures, 2023, 311:116809.
[2]ZHANG Minte, GUO Tong, ZHU Ruizhao, et al. Damage Identification of Seismic-isolated Structure Based on CAE Network Using Vibration Monitoring Data[J]. Engineering Structures, 2023, 283:115873.
[3]TARUNPREET S, SHANKAR S. Damage Identification Using Vibration Monitoring Techniques[J]. Materials Today:Proceedings, 2023, 69:133-141
[4]ZHANG C W, MOUSAVI A A, MASRI S F, et al. Vibration Feature Extraction Using Signal Processing Techniques for Structural Health Monitoring:a Review[J]. Mechanical Systems and Signal Processing, 2022, 177:109175.
[5]CAO Pei, ZHANG Shengli, WANG Zequn, et al. Damage Identification Using Piezoelectric Electromechanical Impedance:a Brief Review from a Numerical Framework Perspective[J]. Structures, 2023, 50:1906-1921.
[6]缪炳荣,刘俊利,张盈,等.轨道车辆结构振动损伤识别技术综述[J].交通运输工程学报,2021,21(1):338-357.
MIAO Bingrong, LIU Junli, ZHANG Ying, et al. Review on Structural Vibration Damage Identification Rechnology for Railway Vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1):338-357.
[7]LI Pengzhi, PEI Yan, LI Jianqiang. A Comprehensive Survey on Design and Application of Autoencoder in Deep Learning[J]. Applied Soft Computing, 2023, 138:110176.
[8]PATHIRAGE C S N, LI J, LI L, et al. Structural Damage Identification Based on Autoencoder Neural Networks and Deep Learning[J]. Engineering Structures, 2018, 172:13-28.
[9]HURTADO A C, KAUR K, ALAMDARI M M, et al. Unsupervised Learning-based Framework for Indirect Structural Health Monitoring Using Adversarial Autoencoder[J]. Journal of Sound and Vibration, 2023, 550:117598.
[10]YU Hui, WANG Kai, LI Yan. Multi-scale Representations Fusion with Joint Multiple Reconstructions Autoencoder for Intelligent Fault Diagnosis[J]. IEEE Signal Processing Letters, 2018, 25(12):1880-1884.
[11]LIU Mandong, PENG Zhenrui, DONG Qi. Structural Damage Identification Based on Extended Kalman Filter and Response Reconstruction[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47(5):2673–2687.
[12]SEVENTEKIDIS P, GIAGOPOULOS D. Model Error Effects in Supervised Damage Identification of Structures with Numerically Trained Classifiers[J]. Mechanical Systems and Signal Processing, 2023, 184:109741.
[13]DING Zhenghao, HOU Rongrong, XIA Yong. Structural Damage Identification Considering Uncertainties Based on a Jaya Algorithm with a Local Pattern Search Strategy and L0.5 Sparse Regularization[J]. Engineering Structures, 2022, 261:114312.
[14]庞军恒,董胜.基于小波包能量与模型修正的海洋平台结构损伤识别[J].振动与冲击,2023,42(6):212-223.
PANG Junheng, DONG Sheng. Structural Damage Identification of an Offshore Platform Based on Wavelet Packet Energy Rate Changing and Model Updating[J]. Journal of Vibration and Shock, 2023, 42(6):212-223.
[15]MOUSAVI A A, ZHANG C W, MASRI S F, et al. Damage Detection and Localization of a Steel Truss Bridge Model Subjected to Impact and White Noise Excitations Using Empirical Wavelet Transform Neural Network Approach[J]. Measurement, 2021, 185:110060.
[16]贺文宇,武骥元,任伟新.基于车致桥梁响应和L1正则化的损伤识别研究[J].中国公路学报,2021,34(4):61-70.
HE Wenyu, WU Jiyuan, REN Weixin. Bridge Damage Detection Based on the Moving-vehicle-induced Response and L1 Regularization[J]. China Journal of Highway and Transport, 2021, 34(4):61-70.
[17]XIAO Feng, SUN Huimin, MAO Yuxue, et al. Damage Identification of Large-scale Space Truss Structures Based on Stiffness Separation Method[J]. Structures, 2023, 53:109-118.
[18]LI H, WU X J, DURRANI T S. Infrared and Visible Image Fusion with ResNet and Zero-Phase Component Analysis[J]. Infrared Physics and Technology, 2019, 102:103039.
[19]许强,李伟,占荣辉,等.一种改进的卷积神经网络SAR目标识别算法[J].西安电子科技大学学报,2018,45(5):177-183.
XU Qiang, LI Wei, ZHAN Ronghui, et al. Improved Algorithm for SAR Target Recognition Based on the Convolutional Neural Network[J]. Journal of Xidian University, 2018, 45(5):177-183.
[20]ROSTAGHI M, AZAMI H. Dispersion Entropy:a Measure for Time Series Analysis[J]. IEEE Signal Processing Letters, 2016, 23(5):610-614.
[21]李从志,郑近德,潘海洋,等.基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法[J].中国机械工程,2019,30(14):1713-1719.
LI Congzhi, ZHENG Jinde, PAN Haiyang, et al. Fault Diagnosis Method of Rolling Bearings Based on Refined Composite Multiscale Dispersion Entropy and Support Vector Machine[J]. China Mechanical Engineering, 2019, 30(14):1713-1719.
[22]何玉灵,孙凯,王涛,等.基于变分模态分解与精细复合多尺度散布熵的发电机匝间短路故障诊断[J].电力自动化设备,2021,41(3):164-172.
HE Yuling, SUN Kai, WANG Tao, et al. Fault Diagnosis of Generator Interturn Short Circuit Fault Based on Variational Mode Decomposition and Refined Composite Multiscale Dispersion Entropy[J]. Electric Power Automation Equipment, 2021, 41(3):164-172.
[23]姜万录,赵亚鹏,张淑清,等.精细复合多尺度波动散布熵在液压泵故障诊断中的应用[J].振动与冲击,2022, 41(8):7-16.
JIANG Wanlu, ZHAO Yapeng, ZHANG Shuqing, et al. Application of Refined Composite Multiscale Fluctuation Dispersion Entropy in Hydraulic Pumps Fault Diagnosis[J]. Journal of Vibration and Shock, 2022, 41(8):7-16.
[24]ZHANG Meiyan, LIU Dan, WANG Qisong, et al. Detection of Alertness-related EEG Signals Based on Decision Fused BP Neural Network[J]. Biomedical Signal Processing and Control, 2022, 74:103479.
[25]LIAO Menghui, LIANG Sheng, LUO Rong, et al. The Moving Load Identification Method on Asphalt Roads Based on the BP Neural Network and FBG Sensor Monitoring[J]. Construction and Building Materials, 2023, 378:131216.
[26]高建敏,金忠凯.基于BP神经网络的高速铁路无砟轨道砂浆层离缝损伤识别[J].铁道学报,2022,44(7):135-144.
GAO Jianmin, JIN Zhongkai. Identification of Mortar Gap Damage of Slab Ballastless Track of High-speed Railway Based on BP Neural Network[J]. Journal of the China Railway Society, 2022, 44(7):135-144.
|