China Mechanical Engineering ›› 2023, Vol. 34 ›› Issue (19): 2269-2287.DOI: 10.3969/j.issn.1004-132X.2023.19.001
Previous Articles Next Articles
ZHA Xuming1,2;YUAN Zhi1;QIN Hao1;XI Linqing1;ZHANG Tao3;JIANG Feng4
Online:
2023-10-10
Published:
2023-11-02
查旭明1,2;袁智1;秦浩1;袭琳清1;张涛3;姜峰4
通讯作者:
姜峰(通信作者),男,1981年生,教授、博士研究生导师。研究方向为高效精密加工。发表论文100余篇。E-mail:jiangfeng@hqu.edu.cn。
作者简介:
查旭明,男,1993年生,讲师。研究方向为高效精密加工与高能复合表层改性。发表论文20余篇。E-mail:xmzha@jmu.edu.cn。
基金资助:
CLC Number:
ZHA Xuming, YUAN Zhi, QIN Hao, XI Linqing, ZHANG Tao, JIANG Feng. Ultrasonic Impact Strengthening of Titanium Alloys:State-of-the-art and Prospectives[J]. China Mechanical Engineering, 2023, 34(19): 2269-2287.
查旭明, 袁智, 秦浩, 袭琳清, 张涛, 姜峰. 钛合金超声冲击强化研究现状及发展趋势[J]. 中国机械工程, 2023, 34(19): 2269-2287.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2023.19.001
[1]ARRAZOLA P J, GARAY A, IRIARTE L M, et al. Machinability of Titanium Alloys(Ti6Al4V and Ti555. 3)[J]. Journal of Materials Processing Technology, 2009, 209(5):2223-2230. [2]赵朋飞, 文磊, 郭文营, 等. 高强铝合金循环盐雾加速腐蚀行为与机理研究[J]. 表面技术, 2022, 51(10):260-268. ZHAO Pengfei, WEN Lei, GUO Wenying, et al. Accelerated Corrosion Behavior and Mechanism of High-strength Aluminum Alloy by Cyclic Salt-spray Test[J]. Surface Technology, 2022, 51(10):260-268. [3]陈金龙. 新型耐热铝合金成分设计及组织性能研究[D]. 南京:东南大学, 2020. CHEN Jinlong. Studies on Composition-constituent Design and Mechanical Properties of Novel Heat-resistant Aluminum Alloys[D]. Nanjing:Southeast University, 2020. [4]罗旋, 韩芳, 黄天林, 等. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11):1489-1496. LUO Xuan, HAN Fang, HUANG Tianlin, et al. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. Acta Metallurgica Sinica, 2022, 58(11):1489-1496. [5]LI Bingqiang, ZHOU Honggen, LIU Jinfeng, et al. Multiaxial Fatigue Damage and Reliability Assessment of Aero-engine Compressor Blades Made of TC4 Titanium Alloy[J]. Aerospace Science and Technology, 2021, 119:107107. [6]童乐为, 牛立超, 任珍珍, 等. Q550D高强钢焊接节点疲劳强度试验研究[J]. 工程力学, 2021, 38(12):214-222. TONG Lewei, NIU Lichao, REN Zhenzhen, et al. Experimental Study on Fatigue Strength of Welded Joints of High Strength Steel Q550D[J]. Engineering Mechanics, 2021, 38(12):214-222. [7]李杰, 李志, 颜鸣皋. 高合金超高强度钢的发展[J]. 材料工程, 2007(4):61-65. LI Jie, LI Zhi, YAN Minggao. Development of High-alloy Ultra-high Strength Steel[J]. Journal of Materials Engineering, 2007(4):61-65. [8]刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3):77-94. LIU Shifeng, SONG Xi, XUE Tong, et al. Application and Development of Titanium Alloy and Titanium Matrix Composite Materials in Aerospace[J]. Journal of Aeronautical Materials, 2020, 40(3):77-94. [9]ZONG Y, YE J. Research on the Development of Titanium Alloy Recovery Technology in Civil Aviation Industry[C]∥2020 International Conference on Optoelectronic Materials and Devices. Guangzhou, 2021:304-310. [10]ZHAO Shiteng, ZHANG Ruopeng, YU Qin, et al. Response to Comment on “Cryoforged Nano-twinned Titanium with Ultrahigh Strength and Ductility”[J]. Science, 2022, 373(6594):1363-1368. [11]KERMANPUR A, AMIN H S, ZIAEI-RAD S, et al. Failure Analysis of Ti6Al4V Gas Turbine Compressor Blades[J]. Engineering Failure Analysis, 2008, 15(8):1052-1064. [12]HAO Yunbo, HUANG Yeling, ZHAO Kai, et al. Research on the Microstructure and Mechanical Properties of Doubled Annealed Laser Melting Deposition TC11 Titanium Alloy[J]. Optics & Laser Technology, 2022, 150:107983. [13]GAO Tao, XUE Hongqian, SUN Zhidan, et al. Micromechanisms of Crack Initiation of Ti-8Al-1Mo-1V Alloy in the Very High Cycle Fatigue Regime[J]. International Journal of Fatigue, 2021, 150:106314. [14]和磊, 韩何岩. 固溶温度和二次固溶对TA19钛合金显微组织的影响[J]. 热处理技术与装备, 2022, 43(2):5-8. HE Lei, HAN Heyan. Effect of Solution Temperature and Secondary Soild Solution on Microstructure of TA19 Titanium Alloy[J]. Heat Treatment Technology and Equipment, 2022, 43(2):5-8. [15]CAO Jingxia, HUANG Xu, MI Guangbao, et al. Research Progress on Application Technique of Ti-V-Cr Burn Resistant Titanium Alloys[J]. Journal of Aeronautical Materials, 2014, 34(4):92-97. [16]LI Wangpan, WANG Han, ZHOU Yuanhai, et al. Yttrium for the Selective Laser Melting of Ti-45Al-8Nb Intermetallic:Powder Surface Structure, Laser Absorptivity, and Printability[J]. Journal of Alloys and Compounds, 2022, 892:161970. [17]BOYER R R. An Overview on the Use of Titanium in the Aerospace Industry[J]. Materials Science and Engineering:A, 1996, 213(1/2):103-114. [18]CHENG Yuzhou, JIN Tai, LUO Kun, et al. Large Eddy Simulations of Spray Combustion Instability in an Aero-engine Combustor at Elevated Temperature and Pressure[J]. Aerospace Science and Technology, 2020, 108(5):106329. [19]HAN Qinan, LEI Xusheng, YANG Hao, et al. Effects of Temperature and Load on Fretting Fatigue Induced Geometrically Necessary Dislocation Distribution in Titanium alloy[J]. Materials Science and Engineering:A, 2021, 800:140308. [20]DUNGEY C, BOWEN P. The Effect of Combined Cycle Fatigue upon the Fatigue Performance of TI-6AL-4V Fan Blade Material[J]. Journal of Materials Processing Technology, 2004, 153:374-379. [21]梁春华. 21世纪大飞机的预研计划与关键技术[J]. 航空制造技术, 2009(17):38-44. LIANG Chunhua. Advanced Program and Key Technology for 21st Century Large Commercial Jet Engine[J]. Aeronautical Manufacturing Technology, 2009(17):38-44. [22]DING M C, ZHANG Y L, LU H T. Fatigue Life Prediction of TC17 Titanium Alloy Based on Micro Scratch[J]. International Journal of Fatigue, 2020, 139:105793. [23]WU Dongbo, LV Hongru, WANG Hui, et al. Surface Micro-morphology and Residual Stress Formation Mechanisms of Near-net-shaped Blade Produced by Low-plasticity Ultrasonic Rolling Strengthening Process[J]. Materials & Design, 2022, 215:110513. [24]CHEN Tao, MIAO Qing, XIONG Mingyue, et al. On the Residual Stresses of Turbine Blade Root of γ-TiAl Intermetallic Alloys Induced by Non-steady-state Creep Feed Profile Grinding[J]. Journal of Manufacturing Processes, 2022, 82:800-817. [25]王宝云, 李争显, 马东康. 钛及钛合金表面强化技术[J]. 稀有金属快报, 2005(7):6-10. WANG Baoyun, LI Zhengxian, MA Dongkang. Titanium and Titanium Alloy Surface Strengthening Technology[J]. Materials China, 2005(7):6-10. [26]LU Ke, LU Jian. Surface Nanocrystallization(SNC)of Metallic Materials-presentation of the Concept behind a New Approach[J]. Journal Materials Science and Technology 1999;(3):193-197. [27]LU Ke, LU Jian. Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment[J]. Materials Science and Engineering:A, 2004, 375:38-45. [28]AGARAM S, SRINIVASAN S M, KANJARLAan A K. Crystal Plasticity Modelling of Stability of Residual Stresses Induced by Shot Peening[J]. International Journal of Mechanical Sciences, 2022, 230:107526. [29]WU Jiajun, HUANG Zheng, QIAO Hongchao, et al. Artificial Neural Network Approach for Mechanical Properties Prediction of TC4 Titanium Alloy Treated by Laser Shock Processing[J]. Optics & Laser Technology, 2021, 143:107385. [30]PANIN A V, KAZACHENOK M S, KOZELSKAYS A I, et al. The Effect of Ultrasonic Impact Treatment on the Deformation Behavior of Commercially Pure Titanium under Uniaxial Tension[J]. Materials & Design, 2017, 117:371-381. [31]LIU Jun, SUSLOV S, VELLORE A, et al. Surface Nano-crystallization by Ultrasonic Nano-crystal Surface Modification and its Effect on Gas Nitriding of Ti6Al4V Alloy[J]. Materials Science and Engineering:A, 2018, 736:335-343. [32]胡国雄, 盛光, 敏韩靖, 等. 塑性变形诱发表面自纳米化的研究及其应用[J]. 材料导报, 2007, 21(4):117-121. HU Guoxiong, SHENG Guang, MING Hanjing, et al. Investigation and Application of Surface Self Nano-crystallization Induced by Severe Plastic Deformation[J]. Materials Reports, 2007, 21(4):117-121. [33]FANG Y W, LI Y H, HE W F, et al. Effects of Laser Shock Processing with Different Parameters and Qays on Residual Stresses Fields of a TC4 Alloy Blade[J]. Materials Science and Engineering:A, 2013, 559:683-692. [34]SALVATI E, LUNT A J G, YING S, et al. Eigenstrain Reconstruction of Residual Strains in an Additively Manufactured and Shot Peened Nickel Superalloy Compressor blade[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 320:335-351. [35]WU Dongbo, ZHENG Yang, WANG Hui, et al. Formation Mechanism of Nano-Crystal on the Blade Surface Produced by Low-plasticity Ultrasonic Rolling Strengthening Process[J]. Journal of Manufacturing Processes, 2023, 90:357-366. [36]房善想. 面向航空叶片表面超声强化的机器人运动规划与柔顺控制研究[D]. 北京:北京交通大学, 2021. FANG Shanxiang. Research on Robot Motion Planning and Compliance Control for Ultrasonic Enhancement of Aeronautical Blade Surface[D]. Beijing:Beijing Jiaotong University, 2021. [37]STATBIKOV E. Physics and Mechanism of Ultrasonic Impact Treatment[J]. IIW Document, 2004, 13:2004-04.SWYGENHOVEN H. Grain Boundaries and Dislocations[J]. Science, 2002, 296(5565):66-67. [38]LI Gang, QU Shenguan, LI Xiaoqiang, et al. Effect of Ultrasonic Surface Rolling at Low Temperatures on Surface Layer Microstructure and Properties of HIP Ti-6Al-4V Alloy[J]. Surface and Coatings Technology, 2017, 316:75-84. [39]LUAN Xiaosheng, ZHAO Wenxiang, LIANG Zhiqiang, et al. Experimental Study on Surface Integrity of Ultra-high-strength Steel by Ultrasonic Hot Rolling Surface Strengthening[J]. Surface and Coatings Technology, 2020, 392:125745. [40]YE Chang, LIU Jun, REN Zhencheng, et al. Microstructure Evolution in Ti64 Subjected to Laser-assisted Ultrasonic Nanocrystal Surface Modification[J]. International Journal of Machine Tools and Manufacture, 2019, 136:19-33. [41]AMANOV A, PYUN Y S. Local Heat Treatment with and without Ultrasonic Nanocrystal Surface Modification of Ti-6Al-4V Alloy:Mechanical and Tribological Properties[J]. Surface and Coatings Technology, 2017, 326:343-354. [42]WANG Haibo, SONG Guolin, TANG Guoyi. Evolution of Surface Mechanical Properties and Microstructure of Ti6Al4V Alloy Induced by Electropulsing-assisted Ultrasonic Surface Rolling Process[J]. Journal of Alloys and Compounds, 2016, 681:146-156. [43]ZHAO Jingyi, DONG Yalin, YE Chang, et al. Multiscale Modeling of Localized Resistive Heating in Nanocrystalline Metals Subjected to Electropulsing[J]. Journal of Applied Physics, 2017, 122(8):085101. [44]YE Chang, MA Chi, DONG Yelin, et al. Improving Plasticity of Metallic Glass by Electropulsing-assisted Surface Severe Plastic Deformation[J]. Materials and Design, 2019, 165:107581. [45]YE Chang, ZHANG Hao, ZHAO Jingyi, et al. The Effects of Electrically-assisted Ultrasonic Nanocrystal Surface Modification on 3D-printed Ti-6Al-4V Alloy[J]. Additive Manufacturing, 2018, 22:60-68. [46]PETCH N J. The Cleavage Strength of Polycrystals[J]. Journal of the Iron and Steel Institute, 1953, 174:25-28. [47]HALL E O. Variation of Hardness of Metals with Grain Size[J]. Nature, 1954, 173(4411):948-949. [48]HANSEN N. Hall-Petch Relation and Boundary Strengthening[J]. Scripta Materialia, 2004, 51(8):801-806. [49]YANG Xiuxuan, ZHANG Bi. Material Embrittlement in High Strain-rate Loading[J]. International Journal of Extreme Manufacturing, 2019, 1(2):022003. [50]CAHOON J R, BROUGHTON W H, KUTZAK A R. The Determination of Yield Strength from Hardness Measurements[J]. Metallurgical Transactions, 1971, 2:1979-1983. [51]ZHANG Meng, DENG Jia, LIU Zhihua, et al. Investigation into Contributions of Static and Dynamic Loads to Compressive Residual Stress Fields Caused by Ultrasonic Surface Rolling[J]. International Journal of Mechanical Sciences, 2019, 163:105144. [52]WANG Cheng, HU Xingyuan, CHENG Yang, et al. Experimental Investigation and Numerical Study on Ultrasonic Impact Treatment of Pure Copper[J]. Surface and Coatings Technology, 2021, 428:127889. [53]温爱玲. 表面纳米化对钛及其合金疲劳性能的影响[D]. 大连:大连交通大学, 2011. WEN Ailing. Effect of Surface Nano-crystallization on Fatigue Property of Commercially Pure Titanium and Titanium Alloys[D]. Dalian:Dalian Jiaotong University. [54]ZHU K Y, VASSE A, BRISSET F, et al. Nanostructure Formation Mechanism of α-Titanium Using SMAT[J]. Acta Materialia, 2004, 52(14):4101-4110. [55]吴波, 宋令慧, 娄欢, 等. AZ31B镁合金压-压循环载荷下变形行为及变形机制演化[J]. 材料工程, 2022(12):160-168. WU Bo, SONG Linghui, LOU Huan, et al. Deformation Behavior and Deformation Mechanism Evolution of AZ31B Magnesium Alloy under Compression-compression Cyclic Loading[J]. Journal of Materials Engineering, 2022(12):160-168. [56]ZHAO Jingyi, DONG Yalin, YE Chang. Optimization of Residual Stresses Generated by Ultrasonic Nanocrystalline Surface Modification through Analytical Modeling and Data-driven Prediction[J]. International Journal of Mechanical Sciences, 2021, 197:106307. [57]INCE A, BANG D, DEVIATORI C. Neuber Method for Stress and Strain Analysis at Notches under Multiaxial Loadings[J]. International Journal of Fatigue, 2017, 102:229-240. [58]ABDENLNASSER A S, BARAKAT A, ELASANABARY S, et al. Experimental Investigation of Generated Surface Roughness in Hard Turning of Ti6Al4V Using Coated Ceramic and CBN Inserts[J]. Port-Said Engineering Research Journal, 2020, 24(2):106-113. [59]王丹, 王凌云, 万军. TC4钛合金车削工艺参数优化[J]. 工具技术, 2016, 50(11):31-33. WANG Dan, WANG Lingyun, WAN Jun. Cutting Parameters Optimization in Turning of TC4 Titanium Alloys[J]. Tool Engineering, 2016, 50(11):31-33. [60]ANWAR S, AHMED N, PERVAIZ S, et al. On the Turning of Electron Beam Melted Gamma-TiAl with Coated and Uncoated Tools:a Machinability Analysis[J]. Journal of Materials Processing Technology, 2020, 282:116664. [61]DEKHTYAR A I, MORDYUK B N, SAVVAKIN D G, et al. Enhanced Fatigue Behavior of Powder Metallurgy Ti-6Al-4V Alloy by Applying Ultrasonic Impact Treatment[J]. Materials Science and Engineering:A, 2015, 641:348-359. [62]谭靓. 抗疲劳表面变质层的多工艺复合控制方法[D]. 西安:西北工业大学, 2018. TAN Liang. Method of Controlling Anti-fatigue Surface Metamorphic Layer during Integration Manufacturing Process[D]. Xian:Northwestern Polytechnical University, 2018. [63]王震. 激光选区熔化Ti6Al4V合金及其表面超声滚压加工的组织与性能研究[D]. 广州:华南理工大学, 2019. WANG Zheng. Studies on Microstructure and Properties of Selective Laser Melted Ti6AL4V Alloy Treated by Ultrasonic Surface Rolling Process[D]. Guangzhou:South China University of Technology, 2019. [64]李凤琴, 赵波. 超声加工滚压力对钛合金表层特性的影响[J]. 表面技术, 2019, 48(10):34-40. LI Fengqin, ZHAO Bo. Effect of Ultrasonic Processing Burnishing Pressure on Titanium Alloy Surface Properties[J]. Surface Technology, 2019, 48(10):34-40. [65]KAYUMOV R, PYUN Y S, SUH C M, et al. Mechanical and Fatigue Characteristics of Ti-6Al-4V Extra Low Interstitial and Solution-treated and Annealed Alloys after Ultrasonic Nanocrystal Surface Modification Treatment[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(12):9430-9435. [66]LUO Xian, REN Xueping, JIN Qi, et al. Microstructural Evolution and Surface Integrity of Ultrasonic Surface Rolling in Ti6Al4V Alloy[J]. Journal of Materials Research and Technology, 2021, 13:1586-1598. [67]WANG Pengcheng, PAN Yongzhi, LI Hongxia, et al. Research on Surface Properties of Ti-6Al-4V Alloy by Multi-ultrasonic Rolling[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2021, 235(21):5594-5602. [68]WANG Zhen, LIU Zhongqiang, GAO Chaofeng, et al. Modified Wear Behavior of Selective Laser Melted Ti6Al4V Alloy by Direct Current Assisted Ultrasonic Surface Rolling Process[J]. Surface and Coatings Technology, 2020, 381:125122. [69]SU Hao, SHEN Xuehui, XU Chongxia, et al. Surface Characteristics and Corrosion Behavior of TC11 Titanium Alloy Strengthened by Ultrasonic Roller Burnishing at Room and Medium Temperature[J]. Journal of Materials Research and Technology, 2020, 9(4):8172-8185. [70]AMANOV A, CHO I S, KIM D E, et al. Fretting Wear and Friction Reduction of CP Titanium and Ti-6Al-4V Alloy by Ultrasonic Nanocrystalline Surface Modification[J]. Surface and Coatings Technology, 2012, 207:135-142. [71]KHERADMANDFARD M, KASHANI-BOZORG S F, LEE J S, et al. Significant Improvement in Cell Adhesion and Wear Resistance of Biomedical β-type Titanium Alloy through Ultrasonic Nanocrystal Surface Modification[J]. Journal of Alloys and Compounds, 2018, 762:941-949. [72]ZHAO Jian, LIU Zhanqiang, CHEN Luanhua, et al. Ultrasonic-induced Phase Redistribution and Acoustic Hardening for Rotary Ultrasonic Roller Burnished Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2020, 51(3):1320-1333. [73]LIANG Yuan, QIN Haifeng, ZHU Jiahua, et al. Controllable Hierarchical Micro/Nano Patterns on Biomaterial Surfaces Fabricated by Ultrasonic Nanocrystalline Surface Modification[J]. Materials and Design, 2018, 137:325-334. [74]CAO Xiaojian, XU Luoping, XU Xiaoli, et al. Fatigue Fracture Characteristics of Ti6Al4V Subjected to Ultrasonic Nanocrystal Surface Modification[J]. Metals, 2018, 8(1):77. [75]ZHAO Xiaohui, XUE Guilian, LIU Yu. Gradient Crystalline Structure Induced by Ultrasonic Impacting and Rolling and Its Effect on Fatigue Behavior of TC11 Titanium Alloy[J]. Results in Physics, 2017, 7:1845-1851. [76]LIU Zhongqiang, GAO Chaofeng, LIU Xiao, et al. Improved Surface Integrity of Ti6Al4V Fabricated by Selective Electron Beam Melting Using Ultrasonic Surface Rolling Processing[J]. Journal of Materials Processing Technology, 2021, 297:117264. [77]赵建. Ti-6Al-4V旋转超声滚压表面强化机理研究[D]. 济南:山东大学, 2020. ZHAO Jian. Surface Strengthening Mechanism of Ti-6Al-4V Machined by Rotary Ultrasonic Burnishing[D]. Jinan:Shangdong University. [78]王峰. 超声滚压TC4钛合金残余应力及表面性能研究[D]. 济南:济南大学, 2020. WANG Feng. Study on Residual Stress and Suface Properties of TC4 Titanium Alloy by Ultrasonic Rolling[D]. Jinan:University of Jinan, 2020. [79]李刚. 热等静压Ti-6Al-4V材料的表面加热辅助超声复合滚压强化机理研究[D]. 广州:华南理工大学, 2017. LI Gang. Study on the Strengthening Mechanism of Surface Heating Assisted Ultrasonic Composite Rolling HIP Ti-6Al-4V Alloy[D]. Guangzhou:South China University of Technology, 2017. [80]LIU Chengsong, LIU Daoxin, ZHANG Xiaohua, et al. Improving Fatigue Performance of Ti-6Al-4V Alloy via Ultrasonic Surface Rolling Process[J]. Journal of Materials Science & Technology, 2019, 35(8):1555-1562. [81]REN Zhaojun, LAI Fuqiang, QU Shengguan, et al. Effect of Ultrasonic Surface Rolling on Surface Layer Properties and Fretting Wear Properties of Titanium Alloy Ti5Al4Mo6V2Nb1Fe[J]. Surface and Coatings Technology, 2020, 389:125612. [82]NI Ao, LIU Daoxin, XU Xingchen, et al. Gradient Nanostructure Evolution and Phase Transformation of α Phase in Ti-6Al-4V Alloy Induced by Ultrasonic Surface Rolling Process[J]. Materials Science and Engineering:A, 2019, 742:820-834. [83]任朝军. 高强韧钛合金TC27材料的脉冲电流辅助超声滚压强化机理研究[D]. 广州:华南理工大学, 2021. REN Zhaojun. Study on the Mechanism of Electropulsing-assisted Ultrasonic Surface Rolling Processing of High Strength and High Toughness Titanium Alloy TC27[D]. Guangzhou:South China University of Technology, 2021. [84]LEI Lei, ZHAO Qinyang, ZHAO Yongqing, et al. Gradient Nanostructure, Phase Transformation, Amorphization and Enhanced Strength-plasticitySynergy of Pure Titanium Manufactured by Ultrasonic Surface Rolling[J]. Journal of Materials Processing Technology, 2022, 299:117322. |
[1] | ZHANG Jinyang, XU Weichun, WANG Xiaohan, JIANG Xiaohui, GAO Shan. Study on Influences of Milling Process Optimization on Residual Stress Distribution for Machining Nickel-based Superalloys [J]. China Mechanical Engineering, 2024, 35(04): 624-635. |
[2] | GAO Song, SUN Yingli, LI Qihan, YING Liang, HAO Zhaopeng, ZHANG Bangcheng. Multi-point 3D Hot Stretch-Bending Process of Titanium Alloy Profiles and Their Microstructure Evolution [J]. China Mechanical Engineering, 2023, 34(24): 2986-2995,3014. |
[3] | GAO Kun, REN Yanxiu, ZHU Yue, QI Lehua, LUO Jun. Experimental Study of Portable Pneumatic Milling for Battle Damages of Aircraft Titanium Alloy Skins [J]. China Mechanical Engineering, 2023, 34(19): 2320-2326. |
[4] | HAN Rui, LI Xiuhong, WANG Jiaming, LI Wenhui, CHENG Siyuan, YANG Shengqiang, . Influences of Horizontal Forced Vibration Finishing on Surface Integrity Parameters of TC4 Titanium Alloys [J]. China Mechanical Engineering, 2023, 34(17): 2037-2047. |
[5] | DUAN Lingyun, HUANG Chuanzhen, LIU Dun, YAO Peng, LIU Hanlian. An Experimental Investigation of Laser Assisted Waterjet Microgrooving of GaAs Wafers [J]. China Mechanical Engineering, 2023, 34(10): 1172-1183. |
[6] | LI Guolong, ZHU Guohua, JIANG Lin, TAO Yijie, JIA Yachao. Optimization of Multi-objective Grinding Process Parameters to Suppress Chatter Marks [J]. China Mechanical Engineering, 2023, 34(09): 1086-1092. |
[7] | CHEN Geng, XIANG Hua, YE HanXIAO Fei. Research on Robot Abrasive Belt Grinding Parameters Considering the Change of Normal Contact Force [J]. China Mechanical Engineering, 2023, 34(07): 803-811,820. |
[8] | WANG Haiyan, ZHOU Zhitong, WU YeFU Qilin. Modeling of Cutting Force in Helical Milling of Titanium Alloys Based on Oblique Cutting Theory [J]. China Mechanical Engineering, 2023, 34(02): 142-147. |
[9] | JI Wenbin, DENG Riqing, DAI Shijie, LIU Chuncheng. Effects of Milling on Surface Integrity and Fatigue Performance of TC4 Titanium Alloy by SLM [J]. China Mechanical Engineering, 2023, 34(02): 208-217,225. |
[10] | HAN Jiang, LI Zhenfu, TIAN Xiaoqing, FEI Ningzhong, XIA Lian, . Research on Prediction and Control Method of Workpiece Tooth Flank Texture during Internal Gear Power Honing [J]. China Mechanical Engineering, 2023, 34(01): 10-16. |
[11] | . Thermo-mechanics Coupling Model and Experimental Research of Longitudinal Torsional Ultrasonic Grinding of TC4 Titanium Alloys [J]. China Mechanical Engineering, 2023, 34(01): 65-74. |
[12] | ZHANG Jun, WANG Wen, WANG Jian, JIN Taotao, TIAN Zhipeng. Simulation Analysis of Temperature Fields and Parameter Optimization of Stationary Shoulder Friction Stir Welding [J]. China Mechanical Engineering, 2022, 33(17): 2115-2124. |
[13] | QU Cong, MENG Zhijuan, ZHAO Liang, CHEN Yao, MA Lidong. Prediction of Five-point Bending Springback of Ti-6Al-4V Plates Based on Variable Elastic Modulus [J]. China Mechanical Engineering, 2022, 33(16): 1991-1999. |
[14] | GAO Binhua, HE Xun, WANG Qirong, JIN Tan, SHANG Zhentao. ECCG of Aluminum AA6061 and Titanium TC4 at Pseudo-steady States [J]. China Mechanical Engineering, 2022, 33(15): 1794-1802,1809. |
[15] | YI Qian, LI Congbo, PAN Jian, ZHANG You. Reliability Analysis of Machining Accuracy and Processing Parameter Optimization for Thin-plate Parts [J]. China Mechanical Engineering, 2022, 33(11): 1269-1277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||