China Mechanical Engineering ›› 2022, Vol. 33 ›› Issue (15): 1857-1868.DOI: 10.3969/j.issn.1004-132X.2022.15.012
Previous Articles Next Articles
MAN Jia1,2;HUA Zesheng1,2;XIA He1,2;LI Jianyong1,2;LI Fangyi1,2;LI Jianfeng1,2
Online:
2022-08-10
Published:
2022-09-01
满佳1,2;华泽升1,2;夏荷1,2;李建勇1,2;李方义1,2;李剑峰1,2
通讯作者:
李剑峰(通信作者),男,1963年生,教授、博士研究生导师。研究方向为绿色制造关键共性技术与装备。发表论文100余篇。E-mail:ljf@sdu.edu.cn。
作者简介:
满佳,男,1991年生,副研究员。研究方向为微流控芯片、绿色制造、医用生物可降解制品制备及表面改性。发表论文20余篇。E-mail:mj@sdu.edu.cn。
基金资助:
CLC Number:
MAN Jia, HUA Zesheng, XIA He, LI Jianyong, LI Fangyi, LI Jianfeng, . Applications of Microfluidic Technology in Cross-domain of Mechanical Engineering and Life Science[J]. China Mechanical Engineering, 2022, 33(15): 1857-1868.
满佳, 华泽升, 夏荷, 李建勇, 李方义, 李剑峰, . 微流控技术在机械工程-生命科学交叉领域的应用[J]. 中国机械工程, 2022, 33(15): 1857-1868.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2022.15.012
[1]林炳承. 微流控芯片实验室及其功能化[J]. 中国药科大学学报, 2003, 34(1):1-6. LIN Bingcheng. Microfluid-based Lab-on-a-chip and Its Functionality[J]. Journal of China Pharmaceutical University, 2003, 34(1):1-6. [2]姚琳, 白亮, 吴亮其, 等. 微流控芯片技术在细胞生物学研究中的应用进展[J]. 中国细胞生物学学报, 2011, 33(11):1254-1266. YAO Lin, BAI Liang, WU Liangqi, et al. Recent Applications of Microfluidic Technology in the Field of Cell Biology[J]. Chinese Journal of Cell Biology, 2011, 33(11):1254-1266. [3]MANZ A, GRABER N, WIDMER H M. Miniaturized Total Chemical Analysis Systems:a Novel Concept for Chemical Sensing[J]. Sensors & Actuators B:Chemical, 1990, 1(1/6):244-248. [4]CHUA J H, CHEE R E, AGARWAL A, et al. Label-free Electrical Detection of Cardiac Biomarker with Complementary Metal-oxide Semiconductor-compatible Silicon Nanowire Sensor Arrays[J]. Analytical Chemistry, 2009, 81(15):6266-6271. [5]SAYAH A, THIVOLLE P A, PARASHAR V K, et al. Fabrication of Microfluidic Mixers with Varying Topography in Glass Using the Powder-blasting Process[J]. Journal of Micromechanics & Microengineering, 2009, 19(8):141-143. [6]ZHUANG G, JIN Q, LIU J, et al. A Low Temperature Bonding of Quartz Microfluidic Chip for Serum Lipoproteins Analysis[J]. Biomedical Microdevices, 2006, 8(3):255-261. [7]CHEN Z, GAO Y, SU R, et al. Fabrication and Characterization of Poly (Methyl Methacrylate)Microchannels by in situ Polymerization with a Novel Metal Template[J]. Electrophoresis, 2010, 24(18):3246-3252. [8]MU C J, ZHANG Z Y, LIN M, et al. Development of a Simple and Reliable PDMS Interconnect for High Throughput Microfluidic Applications[J]. Microsystem Technologies, 2015, 21(1):147-154. [9]BEMBNOWICZ P, GOLONKA L J. Integration of Transparent Glass Window with LTCC Technology for μTAS Application[J]. Journal of the European Ceramic Society, 2010, 30(3):743-749. [10] MARTINEZ A W,PHILLIPS S T, BUTTE M J, et al. Patterned Paper as a Platform for Inexpensive, Low-volume, Portable Bioassays[J]. Angewandte Chemie, 2007, 46(8):1318-1320. [11]DAVID J G, THEODORUS E G, ALWIN M D W, et al. Micromilling:a Method for Ultra-rapid Prototyping of Plastic Microfluidic Devices[J]. Lab Chip, 2015, 15(11):2364-2378. [12]徐迪, 黄青. 微流控SERS及其在生物医学应用的研究进展[J]. 光散射学报, 2020, 32(1):1-22. XU Di, HUANG Qing. Microfluidic SERS Form and Its Biomedical Applications[J]. The Journal of Light Scattering, 2020, 32(1):1-22. [13]BU M, MELVIN T, ENSELL G J, et al. A New Masking Technology for Deep Glass Etching and Its Microfluidic Application[J]. Sensors & Actuators A Physical, 2004, 115(2/3):476-482. [14]YANG Y, NOVIANA E, NGUYEN M P, et al. Paper-based Microfluidic Devices:Emerging Themes and Applications[J]. Analytical Chemistry, 2016, 89(1):71-91. [15]GOLDENBERG B G, GORYACHKOVSKAYA T N, ELISEEV V S, et al. Fabrication of LIGA Masks for Microfluidic Analytical Systems[J]. Journal of Surface Investigation X-ray, Synchrotron and Neutron Techniques, 2008, 2(4):637-640. [16]DUFFY D C, MCDONALD J C, SCHUELLER O J A, et al. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)[J]. Analytical Chemistry, 1998, 70(23):4974-4984. [17]MCDONALD J C, WHITESIDES G M. Poly(dimethylsiloxane)as a Material for Fabricating Microfluidic Devices[J]. Accounts of Chemical Research, 2002, 35(7):491-499. [18]HO C M, NG S H, LI K H, et al. 3D Printed Microfluidics for Biological Applications[J]. Lab Chip, 2015, 15(18):3627-3637. [19]徐富强, 郭赤, 陆庆生. 微流控芯片技术在生命科学研究中的应用及发展[J]. 中国医学装备, 2013, 10(2):45-47. XU Fuqiang, GUO Chi, LU Qingsheng. Application of Microfluidic Chip Technology in Life Science[J]. China Medical Equipment, 2013, 10(2):45-47. [20]LIVAK K J, SCHMITTGEN T D. Analysis of Relative Gene Expression Data Using Real-time Quantitative PCR and the 2(-Delta Delta C(T))Method[J]. Methods, 2001, 25(4):402-408. [21]YAN C, CUI J, HUANG L, et al. Rapid and Visual Detection of 2019 Novel Coronavirus(SARS-CoV-2)by a Reverse Transcription Loop-mediated Isothermal Amplification Assay[J]. Clinical Microbiology and Infection:the Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 2020, 26(6):773-779. [22]HINDSON B J, NESS K D, MASQUELIER D A, et al. High-throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number[J]. Analytical Chemistry, 2011, 83(22):8604-8610. [23]ZHU X, LIU B, SU S, et al. A "Quasi" Confocal Droplet Reader Based on Laser-induced Fluorescence(LIF)Cytometry for Highly-sensitive and Contamination-free Detection[J]. Talanta, 2020, 206:120200. [24]NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated Isothermal Amplification of DNA[J]. Nucleic Acids Research, 2000, 28(12):e63. [25]FANG X, CHEN H, XU L, et al. A portable and Integrated Nucleic Acid Amplification Microfluidic Chip for Identifying Bacteria[J]. Lab Chip, 2012, 12(8):1495-1499. [26]向雪. 博奥晶典完成超过8亿元Pre-IPO轮融资, 启动科创板申报工作[J]. 科技与金融, 2020, 3(8):43. XIANG Xue. Boao Jingdian Completed a Round of Pre-IPO Financing of Over 800 Million Yuan, and Started the Application Work of Science Innovation Board[J]. STF Monthly, 2020, 3(8):43. [27]PAEGEL B M, BLAZEJ R G, MATHIES R A. Microfluidic Devices for DNA Sequencing:Sample Preparation and Electrophoretic Analysis[J]. Current Opinion in Biotechnology, 2003, 14(1):42-50. [28]MADSEN E B, HOIJER I, KVIST T, et al. Xdrop:Targeted Sequencing of Long DNA Molecules from Low Input Samples Using Droplet Sorting[J]. Hum Mutat, 2020, 41(9):1671-1679. [29]CHIKKAVEERAIAH B V, MANI V, PATEL V, et al. Microfluidic Electrochemical Immunoarray for Ultrasensitive Detection of Two Cancer Biomarker Proteins in Serum[J]. Biosensors & Bioelectronics, 2011, 26(11):4477-4483. [30]徐波. 基于微流控芯片的二维电泳分离及蛋白质预富集研究[D]. 武汉:华中科技大学, 2010. XU Bo. Two-dimensional Electrophoresis Separation and Protein Preenrichment Based on Microfluidic Chip[D]. Wuhan:Huazhong University of Science and Technology, 2010. [31]HERRMANN M, VERES T, TABRIZIAN M. Enzymatically-generated Fluorescent Detection in Micro-channels with Internal Magnetic Mixing for the Development of Parallel Microfluidic ELISA[J]. Lab on a Chip, 2006, 6(4):555-560. [32]COSTANTINI F, SBERNA C, PETRUCCI G, et al. Lab-on-chip System Combining a Microfluidic-ELISA with an Array of Amorphous Silicon Photosensors for the Detection of Celiac Disease Epitopes[J]. Sensing and Bio-Sensing Research, 2015, 6(C):51-58. [33]KAJI H, YOKOI T, KAWASHIMA T, et al. Directing the Flow of Medium in Controlled Cocultures of HeLa Cells and Human Umbilical Vein Endothelial Cells with a Microfluidic Device[J]. Lab on a Chip, 2010, 10(18):2374-2379. [34]TOH Y C, ZHANG C, ZHANG J, et al. A Novel 3D Mammalian Cell Perfusion-culture System in Microfluidic Channels[J]. Lab on a Chip, 2007, 7(3):302-309. [35]张洁. 基于微流控平台的细胞共培养及生物微环境模拟的研究[D]. 北京:清华大学, 2016. ZHANG Jie. Development of Cell Co-culture and Biological Microenvironment Imitation Based on Microfluidic Platform[D]. Beijing:Tsinghua University, 2016. [36]LEI K F, WU M H, HSU C W, et al. Real-time and Non-invasive Impedimetric Monitoring of Cell Proliferation and Chemosensitivity in a Perfusion 3D Cell Culture Microfluidic Chip[J]. Biosens Bioelectron, 2014, 51(1):16-21. [37]ZHAO S P, MA Y, LOU Q, et al. Three-dimensional Cell Culture and Drug Testing in a Microfluidic Sidewall-attached Droplet Array[J]. Analytical Chemistry, 2017, 89(19):10153-10157. [38]LI Y, ZHANG T, PANG Y, et al. 3D Bioprinting of Hepatoma Cells and Application with Microfluidics for Pharmacodynamic Test of Metuzumab[J]. Biofabrication, 2019, 11(3):034102. [39]MARTINEZ A W, PHILLIPS S T, WHITESIDES G M, et al. Diagnostics for the Developing World:Microfluidic Paper-based Analytical Devices[J]. Analytical Chemistry, 2010, 82(1):3-10. [40]DERDA R, LAROMAINE A, MAMMOTO A, et al. Paper-supported 3D Cell Culture for Tissue-based Bioassays[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(44):18457-18462. [41]SHAO L, GAO Q, XIE C, et al. Directly Coaxial 3D Bioprinting of Large-scale Vascularized Tissue Constructs[J]. Biofabrication, 2020, 12(3):035014. [42]KIMURA H, SAKAI Y, FUJII T. Organ/body-on-a-chip Based on Microfluidic Technology for Drug Discovery[J]. Drug Metabolism and Pharmacokinetics, 2018, 33(1):43-48. [43]HUH D D. A Human Breathing Lung-on-a-Chip[J]. Annals of the American Thoracic Society, 2015, 12(S1):S42-4. [44]HE J, MAO M, LIU Y, et al. Fabrication of Nature-inspired Microfluidic Network for Perfusable Tissue Constructs[J]. Advanced Healthcare Materials, 2013, 2(8):1108-1113. [45]FU F, SHANG L, CHEN Z, et al. Bioinspired Living Structural Color Hydrogels[J]. Science Robotics, 2018, 3(16):eaar8580. [46]MASCHMEYER I, LORENZ A K, SCHIMEK K, et al. A Four-organ-chip for Interconnected Long-term Co-culture of Human Intestine, Liver, Skin and Kidney Equivalents[J]. Lab on a Chip, 2015, 15(12):2688-2699. [47]ANKER J N, BEHREND C J, HUANG H, et al. Magnetically-modulated Optical Nanoprobes(MagMOONs)and Systems[J]. Journal of Magnetism and Magnetic Materials, 2005, 293(1):655-662. [48]BEHREND C J, ANKER J N, KOPELMAN R. Brownian Modulated Optical Nanoprobes[J]. Applied Physics Letters, 2004, 84(1):154-156. [49]BEHREND C J, ANKER J N, MCNAUGHTON B H, et al. Microrheology with Modulated Optical Nanoprobes(MOONs)[J]. Journal of Magnetism and Magnetic Materials, 2005, 293(1):663-670. [50]WU C, PAN J, BAO Z, et al. Fabrication and Characterization of Chitosan Microcarrier for Hepatocyte Culture[J]. Journal of Materials Science:Materials in Medicine, 2007, 18(11):2211-2214. [51]VELASCO D, TUMARKIN E, KUMACHEVA E. Microfluidic Encapsulation of Cells in Polymer Microgels[J]. Small, 2012, 8:1633-1642. [52]ALTRIA K, BRODERICK M, DONEGAN S, et al. Preliminary Study on the Use of Water-in-oil Microemulsion Eluents in HPLC[J]. Chromatographia, 2005, 62(7):341-348. [53]LI X, IWAI K, PIRMORADI F N, et al. Controlled Drug Delivery via Remotely Heated Core-shell Magnetic Microcapsules[C]∥18th International Conference on Solid-state Sensors, Actuators and Microsystems. Anchorage, 2015:1049-1052. [54]LIU D, ZHANG H, HERRANZ-BLANCO B, et al. Microfluidic Assembly of Monodisperse Multistage pH-responsive Polymer/Porous Silicon Composites for Precisely Controlled Multi-drug Delivery[J]. Small, 2014, 10(10):2029-2038. [55]LI Y N, YAN D, FU F F, et al. Composite Core-shell Microparticles from Microfluidics for Synergistic Drug Delivery[J]. Science China Materials, 2017, 60(6):543-553. [56]杨晓霞, 栾玉霞, 蔡晓青, 等. 多孔微球在医药领域的应用[J]. 药物生物技术, 2011, 18(5):449-452. YANG Xiaoxia, LUAN Yuxia, CAI Xiaoqing, et al. Application of Porous Microspheres in the Field of Medicine and Pharmac[J]. Chinese Journal of Pharmaceutical Biotechnology, 2011, 18(5):449-452. [57]ZHANG H, LIU Y, WANG J, et al. Tofu-inspired Microcarriers from Droplet Microfluidics for Drug Delivery[J]. Science China Chemistry, 2019, 62(1):87-94. [58]AMOYAV B, BENNY O. Microfluidic Based Fabrication and Characterization of Highly Porous Polymeric Microspheres[J]. Polymers, 2019, 11(3):419. [59]YANG S, GUO F, KIRALY B, et al. Microfluidic Synthesis of Multifunctional Janus Particles for Biomedical Applications[J]. Lab on a Chip, 2012(12):2097-2102. [60]SUN X T, GUO R, WANG D N, et al. Microfluidic Preparation of Polymer-lipid Janus Microparticles with Staged Drug Release Property[J]. Journal of Colloid and Interface Science, 2019, 553(1):631-638. [61]WANG L W, YU L, ZENG C F, et al. Fabrication of PAA-PETPTA Janus Microspheres with Respiratory Function for Controlled Release of Guests with Different Sizes[J]. Langmuir, 2018, 34(24):7106-7116. |
[1] | FU Zhenfeng, WANG Zhenzhong, WANG Biao. Research on Microfluidic Chip Fluid Dynamic Pressure Polishing Process [J]. China Mechanical Engineering, 2024, 35(03): 534-540. |
[2] | WANG Kaidi, CHEN Suifan, TANG Wei, QIN Kecheng, LI Qipeng, YANG Zhan, LIU Yang, ZOU Jun. A Bionic Bouncing Robot Design and Made Inspired by Locusts [J]. China Mechanical Engineering, 2023, 34(24): 2946-2951. |
[3] | WANG Wei, WEI Lang, LIU Fusheng, WANG Guoshun. Research on Compliant Legs of Bionic Hexapod Robots [J]. China Mechanical Engineering, 2023, 34(17): 2089-2094. |
[4] | LIU Haolin, LIU Xiaochuan, REN Jia, WANG Jizhen, DONG Jiuxiang, FANG Zheng. Design and Control Algorithm for Hexapod Landing Gear of Unmanned Helicopter [J]. China Mechanical Engineering, 2023, 34(04): 421-430,439. |
[5] | SONG Yong, LU Hao, LI Zhanlong, YAN Bijuan, MENG Jie, LIAN Jinyi. Constant Partial Frequency and Constant Height Design of Nonlinear Commercial Vehicle Bionic Suspensions [J]. China Mechanical Engineering, 2023, 34(01): 84-94. |
[6] | SHI Haotian, ZHANG Hongpeng, XIE Yucai, SUN Yuqing. A Resistance-Inductance Debris Sensor Based on Microfluidic Fabrication [J]. China Mechanical Engineering, 2022, 33(20): 2468-2475. |
[7] | ZHU Yaguang, ZHU Jianwei, LI Ruyue, SONG Zhipeng. Neuromuscular Architecture Based Compliance Control of Bionic Parallel Torsos [J]. China Mechanical Engineering, 2022, 33(13): 1576-1585,1637. |
[8] | ZHENG Yu, GUO Ce, MA Yaopeng, GUAN Jigang. Design,Fabrication and Mechanics Property Analysis of Bionic Multilayer Flexible Lightweight Structures [J]. China Mechanical Engineering, 2021, 32(23): 2876-2882. |
[9] | LI Juanli, LIU Zhaoyang, LI Bo, MA Haozhou, ZHAO Baolin, . Experimental Study of Wear Resistance of Bionic Striped Middle Trough for Scraper Conveyors [J]. China Mechanical Engineering, 2021, 32(21): 2542-2551,2561. |
[10] | SHEN Shuang, LEI Jingtao, ZHANG Yuewen. Position and Stiffness Control of Pneumatic Series Elastic Joints for Bionic Jumping Robots#br# [J]. China Mechanical Engineering, 2021, 32(12): 1486-1493. |
[11] | ZHAO Baolin1,2;LI Bo1,2;XIA Rui1,2;WANG Xuewen1,2;WANG Yun3. Experimental Study of Bionic Wear Resistance Optimization for Middle Plates in Scraper Conveyors [J]. China Mechanical Engineering, 2020, 31(24): 3006-3015. |
[12] | SHEN Xiaoyan;DING Jiawei;YU Jing;LI Dongsheng. Research on Normal Random Micro-vibration of Restrictors in Ultra-precision Gas Static Pressure Systems [J]. China Mechanical Engineering, 2020, 31(20): 2429-2436. |
[13] | HUANG Yun;JIAHUA Suolang;XIAO Guijian. Bionic Surface Abrasive Belt Grinding of Nickel-aluminum Bronze Alloy and Its Noise Reduction Characteristics [J]. China Mechanical Engineering, 2020, 31(20): 2497-2504,2511. |
[14] | PENG Zilong, WEI Zilong, LIU Mingyang, LI Yinan, LAN Hongbo. Electric-field-driven μ-3D Printing Wax-based Molds for Microfluidic [J]. China Mechanical Engineering, 2020, 31(15): 1846-1851. |
[15] | LIU Shihao, LIN Mao. Research on Status and Prospects of Optimization Design Method of High-speed CNC Turntables [J]. China Mechanical Engineering, 2020, 31(13): 1629-1637. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||