Fibre Distribution and Bending Performance of Composite Grid Stiffeners Manufactured by Automated Fibre Placement
ZHAO Cong1;XIAO Jun2;ZHOU Laishui1;AN Luling1
1.College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016
2.College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing,210016
ZHAO Cong, XIAO Jun, ZHOU Laishui, AN Luling. Fibre Distribution and Bending Performance of Composite Grid Stiffeners Manufactured by Automated Fibre Placement[J]. China Mechanical Engineering, 2021, 32(23): 2823-2831.
[1]王世勋, 石玉红, 张希, 等. 复合材料格栅结构研究进展与应用[J]. 宇航材料工艺, 2017, 47(1):5-12.
WANG Shixun, SHI Yuhong, ZHANG Xi, et al. Application and Research Progress of Composite Lattice Grids Structure[J]. Aerospace Materials and Technology, 2017, 47(1):5-12.
[2]燕瑛, 刘玉佳, 廖宝华, 等. 先进复合材料格栅结构与大型飞机[J]. 航空制造技术, 2009(2):26-29.
YAN Ying, LIU Yujia, LIAO Baohua, et al. Advanced Composite Grid Structures and Large Aircraft[J]. Aeronautical Manufacturing Technology, 2009(2):26-29.
[3]杜善义, 章继峰, 张博明. 先进复合材料格栅结构(AGS)应用与研究进展[J]. 航空学报, 2007, 28(2):419-424.
DU Shanyi, ZHANG Jifeng, ZHANG Boming. Overview of Application and Research on Advanced Composite Grid Structures[J]. Acta Materiae Compositae Sinica, 2007, 28(2):419-424.
[4]NAGENDRA S, JESTIN D, GRDAL Z, et al. Improved Genetic Algorithm for the Design of Stiffened Composite Panels[J]. Composite Structure, 1996, 58(3):543-55.
[5]VITALI R, HAFTKA R T, SANKAR B V. Multi-fidelity Design of Stiffened Composite Panel with a Crack[J]. Structure Multidiscipline Optimization, 2002, 23(5):347-56.
[6]FAN H, JIN F, FANG D. Uniaxial Local Buckling Strength of Periodic Lattice Composites[J]. Material Design, 2009, 30(10):4136-45.
[7]张尉博, 张琦, 徐宏涛, 等. 高稳定碳纤维格栅夹层反射器结构设计及型面热变形优化[J]. 复合材料科学与工程, 2020(5):40-46.
ZHANG Weibo, ZHANG Qi, XU Hongtao, et al. Structure Design of Carbon Fibre Grid Sandwich Reflector with High Stability and Optimization of Thermal Deformation[J]. Composite Science and Engineering, 2020(5):40-46.
[8]石姗姗, 陈秉智, 孙直, 等. 基于变环肋间距的碳纤维/环氧树脂复合材料格栅加筋截顶圆锥壳体稳定性[J]. 复合材料学报, 2018, 35(8):2032-2038.
SHI Shanshan, CHEN Bingzhi, SUN Zhi, et al. Stability of Advanced Grid Stiffened Carbon Fiber/ Epoxy Composite Conical Shells with Novel Distribution of Circumferential Ribs[J]. Acta Materiae Compositae Sinica, 2018, 35(8):2032-2038.
[9]马堃僮. 基于假设应力拟协调方法的复合材料格栅加筋结构分析[D]. 大连:大连理工大学, 2019.
MA Kuntong. Assumed Stress Quasi-comforming Formulation for Research of Composite Grid Stiffened Plates[D]. Dalian:Dalian University of Technology, 2019.
[10]刘建良, 梅志远, 唐宇航, 等. 几种典型复合材料板振动特性综合对比分析及设计规律研究[J]. 振动与冲击, 2019, 38(15):65-72.
LIU Jianliang, MEI Zhiyuan, TANG Yuhang, et al. Comprehensive Comparative Analysis for Vibration Characteristics of Several Typical Composite Panels and Their Design Law[J]. Journal of Vibration and Shock, 2019, 38(15):65-72.
[11]HEINECKE F, WILLBERG C. Manufacturing-induced Imperfections in Composite Parts Manufactured via Automated Fiber Placement[J]. Journal of Composites Science, 2019, 3(2):56-80.
[12]DIRK H J L, WARD C, POTTER K D. The Engineering Aspects of Automated Prepreg Layup:History, Present and Future[J]. Composites Part B:Engineering, 2012, 43(3):997-1009.
[13]BELHAJ M, DELEGLISE M, COMAS-CARDONA S, et al. Dry Fiber Automated Placement of Carbon Fibrous Preforms[J]. Composites Part B:Engineering, 2013, 50:107-111.
[14]WU C, GU Y, LUO L, et al. Influences of In-plane and Out-of-plane Fiber Waviness on Mechanical Properties of Carbon Fiber Composite Laminate[J]. Journal of Reinforced Plastics and Composites, 2018, 37(13):877-891.
[15]ZHAO Cong, XIAO Jun, LI Yong, et al. An Experimental Study of the Influence on In-plane Fibre Waviness on Unidirectional Laminates Tensile Properties[J]. Applied composite materials, 2017(24):1321-1337.
[16]赵聪. 铺丝过程纤维面内屈曲机理及其对构件力学性能影响规律研究[D]. 南京:南京航空航天大学, 2017.
ZHAO Cong. Formation Mechanism of In-plane Fiber Waviness and tts Effect on Performance of Composites in Automated Fiber Placement[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017.
[17]WILHELMSSON D, GUTKIN R, EDGREN F, et al. An Experimental Study of Fibre Waviness and Its Effects on Compressive Properties of Unidirectional NCF Composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 107:665-674.
[18]ZHAO Cong, WANG Bendong, XIAO Jun. Macroscopic Characterization of Fibre Micro-buckling and Its Influence on Composite Tensile Performance[J]. Journal of Reinforced Plastics and Composite, 2017, 36(3):196-205.
[19]SAKATA K, BEN G. Fabrication Method and Compressive Properties of CFRP Isogrid Cylindrical Shells[J]. Advanced Composite Materials, 2012, 21(5/6):445-457.
[20]黄其忠, 任明法, 陈浩然. 复合材料网格结构软模共固化成型工艺数值仿真[J]. 复合材料学报, 2010, 27(1):25-31.
HUANG Qizhong, REN Mingfa, CHEN Haoran. Numerical Simulation of Soft-mode Aided Co-curing Process of Advanced Grid Stiffen Structure[J]. Acta Materiae Compositae Sinica, 2010, 27(1):25-31.
[21]黄其忠. 先进复合材料格栅结构软模辅助共固化工艺研究[D]. 大连:大连理工大学, 2013.
HUANG Qizhong. Study on Soft-mold Aided Co-curing Process for Advanced Composite Grid-stiffened Structure[D]. Dalian:Dalian University of Technology, 2013.
[22]SORRENTINO L, MARCHETTI M, BELLINI C, et al. Manufacture of High Performance Isogrid Structure by Robotic Filament Winding[J]. Composite Structures, 2017, 164:43-50.
[23]鲁丹, 齐俊伟, 肖军, 等. 格栅加筋结构的筋条自动铺放方案探索[C]∥全国复合材料学术会议. 厦门, 2014:23.
LU Dan, QI Junwei, XIAO Jun, et al. Layup Strategy of the Stiffener in Advanced Grid Stiffened Structure Manufactured by Automated Fibre Placement[C]∥ Academic Conference on Composite of China. Xiamen, 2014:23.
[24]张鹏. 复合材料网格节点处预浸带变形及其对构件抗失稳能力影响的分析[D]. 南京:南京航空航天大学, 2018.
ZHANG Peng. Analysis of Prepreg Deformation at the Nodes and the Buckling Resistance of Composite Grid[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018.
[25]BRINK W M, VANKAN W J. Design for Manufacturing of Fuselage Panels with Curved Grid Stiffening[R]. Delft:Delft University of Technology, 2013.
[26]RAI H G, ROGER C W, CRANE D A. Mechanics of Curved Fiber Composites[J]. Journal of Reinforced Plastics and Composites, 1992, 11(5):552-566.
[27]KUO C M, TAKAHASHI K, CHOU T W. Effect of Fiber Waviness on the Nonlinear Elastic Behavior of Flexible Composites[J]. Journal of Composite Materials, 1988, 22(11):1004-1025.
[28]KARAMI G, GARNICH M. Effective Moduli and Failure Considerations for Composites with Periodic Fiber Waviness[J]. Composite Structures, 2004, 67(4):461-475.
[29]HASHIN Z. Fatigue Failure Criteria for Unidirectional Fiber Composites[J]. Journal of Applied Mechanics, 1981, 47(2):329-34.
[30]PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Parametric Study of Crushing Parameters and Failure Patterns of Pultruded Composite Tubes Using Cohesive Elements and Seam, Part I:Central Delamination and Triggering Modelling[J]. Polymer Testing, 2010, 29(6):729-741.
[31]BARBERO E J. Finite Element Analysis of Composite Materials Using ABAQUS[M]. Boca Raton:CRC Press, Taylor&Francis Group, 2013.
[32]WISNOM M. Mechanisms to Create High Performance Pseudo-ductile Composites[J]. IOP Conference Series:Materials Science and Engineering, 2016(139):012010.