China Mechanical Engineering ›› 2021, Vol. 32 ›› Issue (23): 2799-2807.DOI: 10.3969/j.issn.1004-132X.2021.23.003
Previous Articles Next Articles
YANG Xiaolong;TANG Yu;ZHU Di
Online:
2021-12-10
Published:
2021-12-23
杨晓龙;唐煜;朱荻
通讯作者:
朱荻(通信作者),男,1954年生,教授、博士研究生导师,中国科学院院士。研究方向为机械制造。E-mail:dzhu@nuaa.edu.cn。
作者简介:
杨晓龙,男,1989年生,副研究员。研究方向为仿生微纳功能表面设计与加工。E-mail:xlyang@nuaa.edu.cn。
基金资助:
CLC Number:
YANG Xiaolong, TANG Yu, ZHU Di. Capillary Liquid Transport on Biomimetic Topological Surfaces for Film Boiling Heat Transfer[J]. China Mechanical Engineering, 2021, 32(23): 2799-2807.
杨晓龙, 唐煜, 朱荻. 面向薄膜沸腾传热的仿生拓扑表面毛细传输研究[J]. 中国机械工程, 2021, 32(23): 2799-2807.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2021.23.003
[1]LI Jiaqi, FU Wuchen, ZHANG Bohan, et al. Ultra-scalable Three-tier Hierarchical Nanoengineered Surfaces for Optimized Boiling[J]. ACS Nano, 2019, 13(12):14080-14093. [2]LI J, ZHU G H, KANG D, et al. Endoscopic Visualization of Contact Line Dynamics during Pool Boiling on Capillary-activated Copper Microchannels[J]. Advanced Functional Materials, 2021, 31(4):2006249. [3]HUANG Bi, JIAN Qifei, LUO Lizhong, et al. Research on the In-plane Temperature Distribution in a PEMFC Stack Integrated with Flat-plate Heat Pipe under Different Startup Strategies and Inclination Angles[J]. Applied Thermal Engineering, 2020, 179:115741. [4]CHO H J, PRESTON D J, ZHUY Y, et al. Nanoengineered Materials for Liquid-Vapour Phase-change Heat Transfer[J]. Nature Reviews Materials, 2016, 2(2):1-17. [5]ELSAYED M L, WU W, CHOW L C. High Salinity Seawater Boiling Point Elevation:Experimental Verification[J]. Desalination, 2021, 504:114955. [6]JIA Chao, LI Yiju, YANG Zhi, et al. Rich Mesostructures Derived from Natural Woods for Solar Steam Generation[J]. Joule, 2017, 1(3):588-599. [7]LIU Guohua, XU Jinliang, WANG Kaiying. SolarWater Evaporation by Black Photothermal Sheets[J]. Nano Energy, 2017, 41:269-284. [8]MOON J H, FADDA D, SHIN D H, et al. Boiling-driven, Wickless, and Orientation-independent Thermal Ground Plane[J]. International Journal of Heat and Mass Transfer, 2021, 167:120817. [9]WEN R F, MA X H, LEE Y C, et al. Liquid-Vapor Phase-change Heat Transfer on Functionalized Nanowired Surfaces and Beyond[J]. Joule, 2018, 2(11):2307-2347. [10]SEO H, YUN H D, KWON S Y, et al. Hybrid Graphene and Single-walled Carbon Nanotube Films for Enhanced Phase-change Heat Transfer[J]. Nano Letters, 2016, 16(2):932-938. [11]SHIN S, CHOI G, RALLABANDI B, et al. Enhanced Boiling Heat Transfer Using Self-actuated Nanobimorphs[J]. Nano Letters, 2018, 18(10):6392-6396. [12]DHILLON N S, BUONGIORNO J, VARANASI K K. Critical Heat Flux Maxima during Boiling Crisis on Textured Surfaces[J]. Nature Communications, 2015, 6(1):1-12. [13]SINHA-RAY S, ZHANG W S, STOLTZ B, et al. Swing-like Pool Boiling on Nano-textured Surfaces for Microgravity Applications Related to Cooling of High-power Microelectronics[J]. NPJ Microgravity, 2017, 3(1):No.9. [14]YU D I, KWAK H J, NOH H, et al. Synchrotron X-ray Imaging Visualization Study of Capillary-induced Flow and Critical Heat Flux on Surfaces with Engineered Micropillars[J]. Science Advances, 2018, 4(2):e1701571. [15]CHENG Xiao, WU Huiying. Improved Flow Boiling Performance in High-aspect-ratio Interconnected Microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 165:120627. [16]CHENG Xiao, YAO Yuanpeng, WU Huiying. An Experimental Investigation of Flow Boiling Characteristics in Silicon-based Groove-wall Microchannels with Different Structural Parameters[J]. International Journal of Heat and Mass Transfer, 2021, 168:120843. [17]HONG S H, DANG C B, HIHARA E. A 3D Inlet Distributor Employing Copper Foam for Liquid Replenishment and Heat Transfer Enhancement in Microchannel Heat Sinks[J]. International Journal of Heat and Mass Transfer, 2020, 157:119934. [18]LI Wenming, WANG Zuankai, YANG Fanghao, et al. Supercapillary Architecture-activated Two-phase Boundary Layer Structures for Highly Stable and Efficient Flow Boiling Heat Transfer[J]. Advanced Materials, 2020, 32(2):1905117. [19]ZHANG C, PALKO J W, BARAKO M T, et al. Enhanced Capillary-fed Boiling in Copper Inverse Opals via Template Sintering[J]. Advanced Functional Materials, 2018, 28(41):1803689. [20]BANG S, RYU S, KI S, et al. Superhydrophilic Catenoidal Aluminum Micropost Evaporator Wicks[J]. International Journal of Heat and Mass Transfer, 2020, 158:120011. [21]MONTAZERI K, LEE H, WON Y. Microscopic Analysis of Thin-film Evaporation on Spherical Pore Surfaces[J]. International Journal of Heat and Mass Transfer, 2018, 122:59-68. [22]HANKS D F, LU Z M, SIRCAR J, et al. Nanoporous Membrane Device for Ultra High Heat Flux Thermal Management[J]. Microsystems & Nanoengineering, 2018, 4(1):1-10. [23]WEN R F, XU S S, LEE Y C, et al. Capillary-driven Liquid Film Boiling Heat Transfer on Hybrid Mesh Wicking Structures[J]. Nano Energy, 2018, 51:373-382. [24]LU Z M, WILKE K L, PRESTON D J, et al. An Ultrathin Nanoporous Membrane Evaporator[J]. Nano Letters, 2017, 17(10):6217-6220. [25]WANG Qingyang, CHEN Renkun. Ultrahigh Flux Thin Film Boiling Heat Transfer through Nanoporous Membranes[J]. Nano Letters, 2018, 18(5):3096-3103. [26]DAO V D, VU N H, YUN S N. Recent Advances and Challenges for Solar-driven Water Evaporation System toward Applications[J]. Nano Energy, 2020, 68:104324. [27]WANG Q Y, CHEN R K. Widely Tunable Thin Film Boiling Heat Transfer through Nanoporous Membranes[J]. Nano Energy, 2018, 54:297-303. [28]ERP R, SOLEIMANZADEH R, NELA L, et al. Co-designing Electronics with Microfluidics for More Sustainable Cooling[J]. Nature, 2020, 585(7824):211-216. [29]JIA Y T, XIA G D, ZONG L X, et al. A Comparative Study of Experimental Flow Boiling Heat Transfer and Pressure Drop Characteristics in Porous-wall Microchannel Heat Sink[J]. International Journal of Heat and Mass Transfer, 2018, 127:818-833. [30]SHARMA D, GHOSH D P, SAHA S K, et al. Thermohydraulic Characterization of Flow Boiling in a Nanostructured Microchannel Heat Sink with Vapor Venting Manifold[J]. International Journal of Heat and Mass Transfer, 2019, 130:1249-1259. [31]TANG Heng, TANG Yong, WAN Zhenping, et al. Review of Applications and Developments of Ultra-thin Micro Heat Pipes for Electronic Cooling[J]. Applied Energy, 2018, 223:383-400. [32]DING C, SONI G, BOZORGI P, et al. A Flat Heat Pipe Architecture Based on Nanostructured Titania[J]. Journal of Microelectromechanical Systems, 2010, 19(4):878-884. [33]JU Jie, BAI Hao, ZHENG Yongmei, et al. A Multi-structural and Multi-functional Integrated Fog Collection System in Cactus[J]. Nature Communications, 2012, 3(1):No.1247. [34]CHEN Huawei, RAN Tong, GAN Yang, et al. Ultrafast Water Harvesting and Transport in Hierarchical Microchannels[J]. Nature Materials, 2018, 17(10):935-942. [35]SHUGAEV M V, HE M, LEVY Y, et al. Laser-induced Thermal Processes:Heat transfer, Generation of Stresses, Melting and Solidification, Vaporization and Phase Explosion[M]∥ SUGIOKA K. Handbook of Laser Micro- and Nano-Engineering. Cham:Springer, 2020:1-81. [36]XU Xianfan. Phase Explosion and Its Time Lag in Nanosecond Laser Ablation[J]. Applied Surface Science, 2002, 197:61-66. [37]HE Haidong, WANG Chunju, ZHANG Xi, et al. Facile Fabrication of Multi-scale Microgroove Textures on Ti-based Surface by Coupling the Re-solidification Bulges Derived from Nanosecond Laser Irradiation[J]. Surface and Coatings Technology, 2020, 386:125460. [38]WASHBURN E W. The Dynamics of Capillary Flow[J]. Physical Review, 1921, 17(3):273-283. [39]TANG Yong, DENG Daxiang, HUANG Guanghan, et al. Effect of Fabrication Parameters on Capillary Performance of Composite Wicks for Two-phase Heat Transfer Devices[J]. Energy Conversion and Management, 2013, 66:66-76. [40]DENG Daxiang, LIANG Dejie, TANG Yong, et al. Evaluation of Capillary Performance of Sintered Porous Wicks for Loop Heat Pipe[J]. Experimental Thermal and Fluid Science, 2013, 50:1-9. |
[1] | BAI Xiaofan, LIU Zhiqiang, LIU Yanshi. Experiments and Analyses of Effects of Axial Low-frequency Vibration on Feed Forces of Cortical Bone Drilling [J]. China Mechanical Engineering, 2023, 34(20): 2411-2427. |
[2] | LIU Yingjie, HU Qiang, ZHAO Xinming, ZHANG Shaoming, HUANG Shuai, WANG Yonghui. Research on Topology Optimization and Additive Manufacturing of Automotive Engine Connection Brackets [J]. China Mechanical Engineering, 2023, 34(18): 2238-2267. |
[3] | XIE Fawu, LI Lingling, LI Li, HUANG Yangpeng. Energy-efficient Job Shop Scheduling with Variable Lot Splitting and Sublots ntermingling Based on Multi-objective Hybrid Evolutionary Algorithm [J]. China Mechanical Engineering, 2023, 34(13): 1576-1588,1598. |
[4] | WANG Chengbing, XIONG Jianjun, JIANG Lei, MA Shuwen. Research on Wheel Grinding Trajectory Algorithm of Straight Blade Flank Faces of Drill Tips [J]. China Mechanical Engineering, 2022, 33(16): 1906-1911. |
[5] | XIA Qinxiang, ZENG Weiguo, CHEN Mingxing, XIAO Gangfeng, HUANG Guojun. Construction and Applications of Machining Process Decision-making Model for Mould Parts Based on Case Reasoning#br# [J]. China Mechanical Engineering, 2022, 33(08): 970-976,985. |
[6] | YU Jianhang, YAN Pei, FAN Lei, GU Huiqing, JIAO LiQ, IU Tianyang, WANG Xibin. Effects of Phase States on Clean Cutting Performance and Surface Integrity of NiTi Alloys [J]. China Mechanical Engineering, 2022, 33(05): 569-576. |
[7] | CHEN Ni, WEI Jiawei, ZHANG Xinlei, LI Liang, HE Ning. Research on Machinability of Laser Modified AlN Substrates [J]. China Mechanical Engineering, 2021, 32(23): 2817-2882. |
[8] | WU Ke, LU Xinming, MEHMOOD Awais, ZHOU Libo, YUAN Julong. Fixed Abrasive Based Self-rotation Grinding for Single Crystal Sapphire [J]. China Mechanical Engineering, 2021, 32(16): 2002-2007,2015. |
[9] | CHEN Bing, LUO Liang, JIAO Haowen, DENG Zhaohui, YAO Honghui. Generation Mechanism of Grinding Marks Based on Grinding Trace Simulations [J]. China Mechanical Engineering, 2021, 32(14): 1677-1685. |
[10] | BAI Xiaofan;HOU Shujun;LI Kai;QU Yunxia. Drilling Forces and Temperature Rises in Axial Low-frequency Vibration-assisted Cortical Bone Drilling [J]. China Mechanical Engineering, 2021, 32(03): 321-330. |
[11] | GAO Yankai;CHEN Dong;XIA Huichao;WU Guangtao. Delay Locking Buckle Technology in Hot Rolled Steel Coil Bundling [J]. China Mechanical Engineering, 2021, 32(03): 363-367. |
[12] | JIAO Haowen1;CHEN Bing1;LUO Liang1;LI Jinbang2,3. Ablation Hole Characteristic of 2.5-dimensional Cf/SiC Composites Processed by Nanosecond Laser [J]. China Mechanical Engineering, 2020, 31(08): 983-990. |
[13] | ZHANG Heng;LI Aiping;FU Xiang;SHAO Huan;LIU Xuemei. An Integrated Optimization Method for Setups Planning and Line Balancing of Mixed Model Transfer Lines [J]. China Mechanical Engineering, 2019, 30(20): 2497-2504. |
[14] | SHENG Jing1,2;XIE Ruoyu1. A Design Method of Processing Parameters of Rotary Friction Welding for a Plastic Clutch Pump [J]. China Mechanical Engineering, 2019, 30(14): 1742-1747. |
[15] | LI Guomin;GAO Liang;LI Xinyu. Dynamic Scheduling of RGV under Uncertain Environments [J]. China Mechanical Engineering, 2019, 30(08): 926-931. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||