LI Congbo, WANG Rui, ZHANG You, JIANG Lijun , SUN Hao. A Novel Fault Early Warning Method for Centrifugal Blowers Based on Transfer Learning[J]. China Mechanical Engineering, 2021, 32(17): 2090-2099,2107.
[1]BALONI B D, PATHAK Y, CHANNIWALA S A. Centrifugal Blower Volute Optimization Based on Taguchi Method[J]. Computers & Fluids, 2015, 112:72-78.
[2]张帆, 刘德顺, 戴巨川, 等. 一种基于SCADA参数关系的风电机组运行状态识别方法[J]. 机械工程学报, 2019, 55(4):1-9.
ZHANG Fan, LIU Deshun, DAI Juchuan, et al. An Operating Condition Recognition Method of Wind Turbine Based on SCADA Parameter Relations[J]. Journal of Mechanical Engineering, 2019, 55(4):1-9.
[3]ZHANG W, LIU J, GAO M, et al. A Fault Early Warning Method for Auxiliary Equipment Based on Multivariate State Etimation Technique and Sliding Window Similarity[J]. Computers in Industry, 2019, 107:67-80.
[4]刘帅, 刘长良, 甄成刚. 基于数据分类重建的风电机组故障预警方法[J]. 仪器仪表学报, 2019, 40(8):1-11.
LIU Shuai, LIU Changliang, ZHEN Chenggang. Fault Warning Method for Wind Turbine Based on Classified Data Reconstruction[J]. Chinese Journal of Scientific Instrument, 2019, 40(8):1-11.
[5]CHEN X, WANG P, HAO Y, et al. Evidential KNN-based Condition Monitoring and Early Warning Method with Applications in Power Plant[J]. Neurocomputing, 2018, 315:18-32.
[6]LI W, PENG M, WANG Q. Fault Identification in PCA Method during Sensor Condition Monitoring in a Nuclear Power Plant[J]. Annals of Nuclear Energy, 2018, 121:135-145.
[7]CHEN J, LI J, CHEN W, et al. Anomaly Detection for Wind Turbines Based on the Reconstruction of Condition Parameters Using Stacked Denoising Autoencoders[J]. Renewable Energy, 2020, 147:1469-1480.
[8]WANG L, ZHANG Z, XU J, et al. Wind Turbine Blade Breakage Monitoring with Deep Autoencoders[J]. IEEE Transactions on Smart Grid, 2018, 9(4):2824-2833.
[9]李晓彬, 牛玉广, 葛维春, 等. 基于改进堆叠自编码网络的电站辅机故障预警[J]. 仪器仪表学报, 2019, 40(6):39-47.
LI Xiaobin, NIU Yuguang, GE Weichun, et al. Early Fault Warning of Power Plant Auxiliary Engine Based on Improved Stacked Autoencoder Network[J]. 2019, 40(6):39-47.
[10]RENSTROM N, BANGALORE P, HIGHCOCK E. System-wide Anomaly Dtection in Wind Turbines Using Deep Autoencoders[J]. Renewable Energy, 2020, 157:647-659.
[11]ALFEO A L, CIMINO M G, MANCO G, et al. Using an Autoencoder in the Design of an Anomaly Detector for Smart Manufacturing[J]. Pattern Recognition Letters, 2020, 136:272-278.
[12]SUN P, LI J, WANG C, et al. A Generalized Model for Wind Turbine Anomaly Identification Based on SCADA Data[J]. Applied Energy, 2016, 168:550-567.
[13]毛文涛, 田思雨, 窦智, 等. 一种基于深度迁移学习的滚动轴承早期故障在线检测方法[J/OL]. 自动化学报:1-13[2020-11-06]. https:∥doi. org/10. 16383/j. aas. c190593.
MAO Wentao, TIAN Siyu, DOU Zhi, et al. A New Deep Transfer Learning-based Online Detection Method of Rolling Bearing Early Fault[J]. Acta Automatica Sinica:1-13[2020-11-06]. https:∥doi. org/10. 16383/j. aas. c190593.
[14]SUN C, MA M, ZHAO Z, et al. Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4):2416-2425.
[15]邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9):84-90.
SHAO Haidong, ZHANG Xiaoyang, CHENG Junsheng, et al. Intelligent Fault Diagnosis of Bearing Using Enhanced Deep Transfer Auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(9):84-90.
[16]WEN L, GAO L, LI X. A New Deep Transfer Learning Based on Sparse Auto-encoder for Fault Diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 49(1):136-144.
[17]WU Z, JIANG H, ZHAO K, et al. An Adaptive Deep Transfer Learning Method for Bearing Fault Diagnosis[J]. Measurement, 2020, 151:107227.
[18]YANG B, LEI Y, JIA F, et al. An Intelligent Fault Diagnosis Approach Based on Transfer Learning from Laboratory Bearings to Locomotive Bearings[J]. Mechanical Systems and Signal Processing, 2019, 122:692-706.
[19]戴稳, 张超勇, 孟磊磊, 等. 采用深度学习的铣刀磨损状态预测模型[J]. 中国机械工程, 2020, 31(17):2071-2078.
DAI Wen, ZHANG Chaoyong, MENG Leilei, et al. Prediction Model of Milling Cutter Wear Status Based on Deep Learn[J]. China Mechanical Engineering, 2020, 31(17):2071-2078.
[20]陈俊生, 李剑, 陈伟根, 等. 采用滑动窗口及多重加噪比堆栈降噪自编码的风电机组状态异常检测方法[J]. 电工技术学报, 2020, 35(2):346-358.
CHEN Junsheng, LI Jian, CHEN Weigen, et al. A Method for Detecting Anomaly Conditions of Wind Turbines Using Stacked Denoising Autoencoders with Sliding Window and Multiple Noise Ratios[J]. Transactions of China Electrotechnical Society, 2020, 35(2):346-358.
[21]金棋, 王友仁, 王俊. 基于深度学习多样性特征提取与信息融合的行星齿轮箱故障诊断方法[J]. 中国机械工程, 2019, 30(2):196-204.
JIN Qi, WANG Youren, WANG Jun. Planetary Gearbox Fault Diagnosis Based on Multiple Feature Extraction and Information Fusion Combined with Deep Leaning[J]. China Mechanical Engineering, 2019, 30(2):196-204.
[22]李宏坤, 郝佰田, 代月帮, 等. 基于压缩感知和加噪堆栈稀疏自编码器的铣刀磨损程度识别方法研究[J]. 机械工程学报, 2019, 55(14):1-10.
LI Hongkun, HAO Baitian, DAI Yuebang, et al. Wear Status Recognition for Milling Cutter Based on Compressed Sensing and Noise Stacking Sparse Auto-encoder[J]. Journal of Mechanical Engineering, 2019, 55(14):1-10.
[23]LI Q, TANG B, DENG L, et al. Deep Balanced Domain Adaptation Neural Networks for Fault Diagnosis of Planetary Gearboxes with Limited Labeled Data[J]. Measurement, 2020, 156.
[24]ABIRI N, LINSE B, EDEN P, et al. Establishing Strong Imputation Performance of a Denoising Autoencoder in a Wide Range of Missing Data Problems[J]. Neurocomputing, 2019, 365(6):137-146.
[25]王振亚, 姚立纲. 广义精细复合多尺度样本熵与流形学习相结合的滚动轴承故障诊断方法[J]. 中国机械工程, 2020, 31(20):2463-2471.
WANG Zhenya, YAO Ligang. Rolling Bearing Fault Diagnosis Method Based on Generalized Refined Composite Multiscale Sample Entropy and Manifold Learning[J]. China Mechanical Engineering, 2020, 31(20):2463-2471.