[1]邬本祥,陈政伟,黄隆荣,等. 刀具刃口制备技术研究进展[J]. 工具技术, 2019, 53(1):8-14.
WU Benxiang, CHEN Zhengwei, HUANG Longrong, et al. State of Art in Cutting Tool Edge Preparation Technologies[J]. Tool Engineering, 2019, 53(1):8-14.
[2]CHOUDHURY I A, SEE N L, ZUKHAIRI M. Machining with Chamfered Tools[J]. Journal of Materials Processing Technology, 2005, 170(1/2):115-120.
[3]JACOBSON S, WALLN P. A New Classification System for Dead Zones in Metal Cutting[J]. International Journal of Machine Tools and Manufacturing, 1988, 28(4):529-538.
[4]万蕾. 基于有限元方法的金属切削过程研究[D]. 上海:上海工程技术大学, 2016:29-53.
WAN Lei. Numerical Analysis of Metal Cutting Process[D]. Shanghai:Shanghai University of Engineering Science, 2016:29-53.
[5]USUI E, KIKUCHI K, HOSHI K. The Theory of Plasticity Applied to Machining with Cut-away Tools[J]. Journal for Engineering for Industry, 1964, 86(2):95-104.
[6]LEE E, SHAFFER B W. The Theory of Plasticity Applied to a Problem of Machining[J]. Journal of Applied Mechanics, 1951, 18:405.
[7]史艳红, 赵先锋, 姜雪婷. 滑移线场理论在正交切削过程中的研究现状[J]. 华南理工大学学报(自然科学版), 2019, 47(1):14-31.
SHI Yanhong, ZHAO Xianfeng, JIANG Xueting. Current Research on the Application of the Slip Line Field Theory in the Orthogonal Cutting Process[J]. Journal of South China University of Technology (Natural Science Edition), 2019:47(1):14-31.
[8]ZHANG H, LIU P, HU R. A Three-zone Model and Solution of Shear Angle in Orthogonal Machining[J]. Wear, 1991, 143(1):29-43.
[9]FANG N, DEWHURST P. Slip-line Modeling of Build-up Edge Formation in Machining[J]. International Journal of Mechanical Sciences, 2005, 47(4):1079-1098.
[10]KIYOTA H, ITOIGAWA F, ENDO S,et al. Analytical Approach for Optimization of Chamfered Cutting Tool Preparation Considering Build-up Edge Extrusion Behavior[J]. International Journal of Automotive Technology, 2013, 7(3):329-336.
[11]KARPAT Y, OZEL T. Analytical and Thermal Modeling of High-speed Machining with Chamfered Tools[J]. Journal of Manufacturing Science and Engineering, 2008, 130(1):011001.
[12]陈明君, 陈妮, 何宁, 等. 微铣削加工机理研究新进展[J]. 机械工程学报, 2014, 50(5):161-172.
CHEN Mingjun, CHEN Ni, HE Ning, et al. The Research Progress of Micro Milling in Machining Mechanism[J]. Journal of Mechanical Engineering, 2014, 50(5):161-172.
[13]罗翔, 黄燊华. 正交切削变形区的研究[J]. 广东工学院学报, 1989, 6(1):29-35.
LUO Xiang, HUANG Shenhua. A Study of Deformation Zone in Orthogonal Metal Cutting[J]. Journal of Guangdong Institute of Technology, 1989, 6(1):29-35.
[14]WALDORF D J, DEVOR R E, KAPOOR S G. A Slip-line Field for Ploughing during Orthogonal Cutting[J]. Journal of Manufacturing Science and Engineering, 1998, 120(4):693-699.
[15]FANG N. Slip-line Modeling of Machining with a Rounded-edge Tool—Part I:New Model and Theory[J]. Journal of Mechanics and Physics of Solids, 2003, 51(4):715-742.
[16]朱锟鹏, 李科选, 梅涛, 等. 微铣削力建模研究发展[J]. 机械工程学报, 2016, 52(17):20-34.
ZHU Kunpeng, LI Kexuan, MEI Tao, et al. Progress of Cutting Force Modeling in Micromilling[J]. Journal of Mechanical Engineering, 2016, 52(17):20-34.
[17]JIN X L, ALTINTAS Y. Slip-line Field of Micro-cutting Progress with Round Tool Edge Effect[J]. Journal of Material Processing Technology, 2011, 211(3):339-355.
[18]WAN M, WEN D Y, MA Y C,et al. On the Separation and Cutting Force Prediction in Micro Milling through Involving the Effect of Dead Metal Zone[J]. International Journal of Machine Tools and Manufacture, 2019, 146:103452.
[19]BARTARYA G, CHOUDHURY S. State of the Art in Hard Turning[J]. International Journal of Machine Tools and Manufacture, 2012, 53:1-14.
[20]WAN L, WANG D Z. Numerical Analysis of the Formation of the Dead Metal Zone with Different Tools in Orthogonal Cutting[J]. Simulation Modeling Practice and Theory, 2015, 56:1-15.
[21]AGMELL M, AHADI A, GUTNICHENKO O,et al. The Influence of Tool Micro-geometry on Stress Distribution in Turning Operations of AISI 4140 by FE Analysis[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9/12):3109-3122.
[22]FANG N. Tool-chip Friction in Machining with a Large Negative Rake Angle Tool[J]. Wear, 2005, 285(5):890-897.
[23]HU C, ZHUANG K J, WENG J,et al. Thermal-mechanical Model for Cutting with Negative Rake Angle Based on a Modified Slip-line Field Approach[J]. International Journal of Mechanical Sciences, 2019, 164:105167.
[24]OHBUCHI Y, OBIKAWA T. Finite Element Modeling of Chip Formation in the Domain of Negative Rake Angle Cutting[J]. Journal of Engineering Materials and Technology, 2003, 125(3):324-332.
[25]BAHI S, NOUARI M, MOUFKI A, et al. Hybrid Modeling of Sliding-sticking Zones at the Tool-chip Interface under Dry Machining and Tool Wear Analysis[J]. Wear, 2012, 286:45-54.
[26]THOMSEN E G, MACDONALD A, KOBAYASHI S. Flank Friction Studies with Carbide Tools Reveal Sublayer Plastic Flow[J]. Journal of Engineering for Industry, 1962, 84:53-62.
[27]KARPAT Y, OZEL T. An Integrated Analytical Model for Orthogonal Cutting with Chamfered Tools[J]. Transactions of NAMRI/SME, 2006, 34:9-16.
[28]HU C, ZHUANG K J, WENG J,et al. Cutting Temperature Prediction in Negative-rake-angle Machining with Chamfered Insert Based on a Modified Slip-line Field Approach[J]. International Journal of Mechanical Sciences, 2020, 167:105273.
[29]OZTURK S, ALTAN E. Slip-line Metal Cutting Model with Negative Rake Angle[J]. Journal of Brazilian Society of Mechanical Sciences and Engineering, 2012, 34(3):246-252.
[30]FATIMA A, MATIVENGA P T. A Review of Tool-chip Contact Length Models in Machining and Future Direction for Improvement[J]. Proceeding of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2013, 227(3):345-356.
[31]HILL R. On the Limits Set by Plastic Yielding to the Intensity of Singularities of Stress[J]. Journal of Mechanics and Physics of Solids, 1954, 2(4):278-285.
[32]FLUHRER J. DEFORM-3D Version 5.0 User’s Manual[J]. Scientific Forming Technologies Corporation, 2004.
[33]王子涛, 石广丰, 史国权. 负前角刀具正交切削的滞留特性及力学性能有限元仿真分析[J]. 刀具技术, 2018, 52(5):20-24.
WANG Zitao, SHI Guangfeng, SHI Guoquan. Finite Element Simulation Analysis of the Stagnant Characteristic and Mechanical Properties of the Orthogonal Cutting of Negative Rake Angle[J]. Tool Engineering, 2018, 52(5):20-24.
|