中国机械工程

• 可持续制造 • 上一篇    下一篇

不同冷却工况下的磨削钛合金温度场模型及验证

王晓铭1;张建超1;王绪平2;张彦彬2;罗亮3;赵伟4;刘波5;聂晓霖6;李长河1   

  1. 1.青岛理工大学机械与汽车工程学院,青岛,266520
    2.迈赫机器人自动化股份有限公司智能制造技术研究院,潍坊,262200
    3.宁波三韩合金材料有限公司,宁波,315040
    4.烟台海英机械有限公司,烟台,265299
    5.四川明日宇航工业有限责任公司,什邡,618400
    6.南京科润工业介质股份有限公司,南京,211106
  • 出版日期:2021-03-10 发布日期:2021-03-17
  • 基金资助:
    国家自然科学基金(51975305,51905289);
    山东省重点研发计划(2019GGX104040,2019GSF108236);
    山东省重大创新工程(2019JZZY020111)

Temperature Field Model and Verification of Titanium Alloy Grinding under Different Cooling Conditions

WANG Xiaoming1;ZHANG Jianchao1;WANG Xuping2;ZHANG Yanbin2;LUO Liang3;ZHAO Wei4;LIU Bo5;NIE Xiaolin6;LI Changhe1   

  1. 1.School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao,Shandong,266520
    2.Research Institute of Intelligent Manufacturing Technology,MH Robot & Automation Co.,Ltd.,Weifang,Shandong,262200
    3.Ningbo SANHAN Alloy Material Co.,Ltd.,Ningbo,Zhejiang,315040
    4.Yantai HAIYING Machinery Co.,Ltd.,Yantai,Shandong,265299
    5.Sichuan Future Aerospace Industrial Co.,Ltd.,Shifang,Sichuan,618400
    6.Nanjing Kerun Lubricants Co.,Ltd.,Nanjing,211106
  • Online:2021-03-10 Published:2021-03-17

摘要: 为克服普通纳米流体微量润滑在磨削区换热能力不足的技术瓶颈,提出了低温风冷+纳米流体微量润滑的新工艺,并建立了温度场有限差分模型。对低温风冷+纳米流体微量润滑、低温风冷、纳米流体微量润滑三种冷却方式下的磨削温度场进行了数值仿真,结果表明低温风冷+纳米流体微量润滑的换热能力最强,低温风冷次之,纳米流体微量润滑最弱。在三种不同冷却方式下对钛合金Ti-6Al-4V平面磨削温度场进行了实验,工件表面最高温度相对误差小于5%,验证了理论模型的正确性。

关键词: 磨削, 纳米流体, 钛合金, 风冷, 温度场

Abstract: To overcome bottlenecks of insufficient heat capacity for atomizing air carrying nanofluids in grinding zone, a new process coupled with cryogenic air and nanofluid minimum quantity lubrication was proposed. A finite difference model of temperature field was established. Temperature fields of grinding zone with three cooling methods such as cryogenic air, nanofluid minimum quantity lubrication, and cryogenic air nanofluid minimum quantity lubrication were numerically simulated. The results show that cryogenic air nanofluid minimum quantity lubrication has the strongest heat transfer capacity, followed by cryogenic air, and nanofluid minimum quantity lubrication is the weakest. Moreover, the temperature field of surface grinding was verified under three cooling method experiments with Ti-6Al-4V as workpiece. The model error is less than 5%, which verified accuracy of the theoretical model.

Key words: grinding, nanofluid, titanium alloy, forced air cooling, temperature field

中图分类号: