中国机械工程

• 机械基础工程 • 上一篇    下一篇

基于转矩优化分配的电动汽车横摆稳定性研究

杨慎1;欧健1;杨鄂川2;胡经庆1;张勇1   

  1. 1.重庆理工大学车辆工程学院,重庆,400054
    2.重庆理工大学机械工程学院,重庆,400054
  • 出版日期:2017-07-25 发布日期:2017-07-26
  • 基金资助:
    重庆市教委科学技术研究项目(KJ1600911);
    重庆市基础与前沿研究计划资助项目(cstc2015jcyjA60010)

Research on Electric Vehicle Yaw Stability Based on Torque Optimum Distributions

YANG Shen1;OU Jian1;YANG Echuan2;HU Jingqing1;ZHANG Yong1   

  1. 1.School of Vehicle Engineering,Chongqing University of Technology,Chongqing,400054
    2.School of Mechanical Engineering,Chongqing University of Technology,Chongqing,400054
  • Online:2017-07-25 Published:2017-07-26

摘要: 以四轮轮毂电机驱动电动汽车为研究对象,针对车辆稳定性问题,提出了基于横摆角速度和质心侧偏角联合控制的横摆力矩模糊控制方法。确立了分层控制结构,上层控制器基于模糊控制理论得到控制所需的附加横摆力矩,下层控制器应用加权最小二乘方法并联合轮毂电机与液压制动系统进行力矩优化分配。实时仿真实验结果表明:联合轮毂电机与液压制动系统的优化分配控制策略有效提高了车辆的稳定性。

关键词: 车辆稳定性, 直接横摆力矩控制, 模糊控制, 力矩分配

Abstract: With improving vehicle stability as objective, a combination control strategy of yaw rates and slip angles was designed for a four in-wheel-motor driven electric vehicle based on fuzzy control method. A hierarchical control structure was investigated, the upper layer obtained required additional yaw moments based on fuzzy control theory, while lower layer used weighted least squares method to optimize torque distributions by adopting an in-wheel motors/hydraulic brake system combined control strategy. And real-time simulation experiments were carried out based on real-time simulation platform, simulation results show that the optimal allocation control strategy of combined in-wheel motor and the hydraulic braking system may improve the stability of vehicles effectively.

Key words: vehicle stability, direct yaw moment control, fuzzy control, moment distribution

中图分类号: