中国机械工程 ›› 2016, Vol. 27 ›› Issue (06): 754-760,766.

• 机械基础工程 • 上一篇    下一篇

热流固耦合下增压器涡壳多目标优化

李发宗1,2;童水光1;袁铭鸿1   

  1. 1.浙江大学,杭州,310027
    2.宁波工程学院,宁波,315336
  • 出版日期:2016-03-25 发布日期:2016-03-24

Multi-objective  Optimization  for  Turbocharger  Housing  Considering Thermo-fluid-solid Interaction

Li Fazong1,2;Tong Shuiguang1;Yuan  Minghong1   

  1. 1.Zhejiang University,Hangzhou,310027
    2.Ningbo University  of Technology,Ningbo,Zhejiang,315336
  • Online:2016-03-25 Published:2016-03-24

摘要:

以某型增压器涡壳为研究对象,采用热流固耦合分析方法,建立涡壳热流固耦合的有限元模型,对增压器涡壳热结构进行分析,获得涡壳的热塑性应变分布,确定涡壳产生热结构破坏的部位,并与涡壳热循环试验结果相比较,验证了涡壳热流固耦合分析模型的正确性。选取涡壳三个危险部位的热塑性应变为优化目标,采用响应面方法,构建了以涡壳危险部位结构尺寸参数为设计变量,以增压器涡壳的热塑性应变为优化目标的结构优化近似模型,采用基于响应面方法和遗传算法的多目标优化方法获得涡壳最优结构参数组合,并通过了热流固耦合仿真的验证。涡壳三个危险部位的热塑性应变分别从原来的3.3%、3.2%、2.6%降为0.66%、0.8%、1.03%,表明该优化方法改善了涡壳的热结构强度,降低了涡壳产生热裂纹的风险,提高了涡壳的热结构稳定性与可靠性。

关键词: 热流固耦合, 涡壳, 响应面法, 多目标优化

Abstract:

A  thermo-fluid-solid  interaction  method of  turbocharger housing was  proposed  and  a  finite element model was established.The thermal structure of turbocharger housing was analyzed.The distribution   of  thermo plasticity strain and the location of thermal structure destruction of turbine housing were found by thermo-fluid-solid  interaction  analyses.Analysis results were  compared  with the thermal  cycling  test results of  the turbine housing and the correctness of the thermo-fluid-solid  interaction  model was proved.The thermo plasticity strain of three risk regions in turbine housing were selected as optimization objectives,a structure optimization approximation model was established by response surface method,  which took size parameters of dangerous parts as design variables and the thermo plasticity strain of turbine housing as optimization objectives.The optimal structural parameter combination of the turbine housing was obtained by multi-objective optimization method based on response surface method and genetic algorithm,and the optimization model was verified by thermo-fluid-solid  interaction experiments.The  results show that the thermo plasticity strains of three risk regions in turbine housing decrease from 3.3%,3.2%,2.6% to 0.66%,0.8%,1.03% respectively.The  optimization method  can improve thermal structure intensity,reduce  the risk of hot cracking formation and improve the stability and  reliability of heat structure of turbine housing.

Key words: thermo-fluid-solid , interaction;turbine housing;response , surface , methodology;multi-objective optimization

中图分类号: