[1]谷正气. 汽车空气动力学[M].北京:人民交通出版社,2005. 
[2]傅立敏, 吴允柱, 贺宝琴. 超车过程的车辆气动特性仿真研究[J]. 中国机械工程, 2007,18(5):621-625. 
Fu Limin, Wu Yunzhu, He Baoqin. Simulation Research on Automotive Aerodynamic Characteristics  during the Overtaking Process[J].China Mechanical Engineering,2007,18(5):621-625. 
[3]容江磊, 谷正气, 杨易, 等. 基于kriging模型的跑车尾翼断面形状的气动优化[J]. 中国机械工程, 2011,22(2):243-247. 
Rong Jianglei,Gu Zhengqi,Yang Yi,et al.Aerodynamic  Optimization of Cross Sectional Shape for   a Sports  Car’s  Rear Wing Based on Kriging Surrogate Model[J].China Mechanical Engineering,2011,22(2):243-247. 
[4]杨易,徐永康,聂云,等.非定常来流对汽车气动升力瞬态特性的影响[J].中国机械工程,2014,25(12):1681-1686.  
Yang Yi,Xu Yongkang,Nie Yun,et al.Effects of Unsteady Stream on Transient Characteristics of Automotive Lift[J].China Mechanical Engineering, 2014, 25(12):1681-1686. 
[5]何忆斌, 李伟平, 刘孟祥,等. F1方程式赛车后升力翼的气动特性[J]. 航空动力学报, 2013, 28(10):2343-2347.  
He Yibin,Li Weiping,Liu Mengxiang,et al.Rear Lifting Airfoil Aerodynamic Characteristic of F1 Racing Car[J]. Journal of Aerospace Power, 2013, 28(10):2343-2347. 
[6]田红旗.中国列车空气动力学研究进展[J].交通运输工程学报,2006,6(1):1-9. 
Tian Hongqi.Study Evolvement of  Train  Aerodynamics  in  China[J].Journal  of  Traffic  and  Transportation  Engineering, 2006, 6(1):1-9. 
[7]Versteeg H K,Malalasekera W.An Introduction to Computational Fluid Dynamics:The Finite Volume Method(2nd Edition)[M].New York: Prentice Hall,2007. 
[8]汪怡平,谷正气,邓亚东.基于准k-ε -v2/LES模型的汽车外流场数值模拟[J].机械工程学报,2012,48(14):97-103. 
Wang Yiping,Gu Zhengqi,Deng Yadong.Aerodynamic Simulations  of  Vehicle  by Using the Hybrid Semi  k-ε-v2/LES Model[J]. Journal of Mechanical Engineering,2012,48(14):97-103. 
[9]Jones W  P,Launder  B E.The Calculation of Low-Reynolds-number Phenomena  with a  Two-equation Model of Turbulence[J]. International Journal of  Heat  and  Mass  Transfer,1973,16:1119-1130. 
[10]Abe K,Kondoh T,Nagano  Y.A New Turbulence Model for Predicting Fluid Flow and  Heat Transfer  in Separating and Reattaching Fflows I:Low Fleld Calculations[J].International Journal of Heat and Mass Transfer,1994,37(1):139-151. 
[11]Chang K C,Hsieh  W  D,Chen  C S.A Modified Low-Reynolds-number  Turbulence Model Applicable to Recirculating Flow in Pipe Expansion[J].Transactions of the ASME,Journal of  Fluids Engineering,1995,117: 417-423. 
[12]符松,王亮.湍流转捩模式研究进展[J].力学进展,2007,37(3):409-416. 
Fu Song,Wang Liang.Progress  in  Turbulence/Transition  Modeling[J].Advances  in  Mechanics,2007,37(3):409-416. 
[13]Menter  F,Langtry R,Likki  S,et al.Correlatio-based Transition Model Using Local Variables-Part  1:Model  Formulation[J]. Journal  of  Turbomachinery,2006,128(3):413-422. 
[14]Mayle R E, Schulz A.The Path to Predicting Bypass Transtion[J].Journal of Turbomachinery, 1997,119(3):405-411. 
[15]Cutrone  L,Palma P  D,Pascazio  G,et  al.An Evaluation of Bypass Transiton Models for Turbomachinery Flows[J].Heat and Fluid Flow,2006,28(1):161-177. 
[16]Walters  D K,James H  L.A  New  Model for Boundary  Layer  Transition  Using  a  Single-point  RANS  Approach[J]. Journal of Turbomachinery,2004,126(1):193-202. 
[17]Walters D  K,Cokljat  D.A  Three Equation Eddy Viscosity Model for Reynolds Averaged Navie-stokes  Simulations  of Transitional Flow[J].Journal of  Fluids Engineering,2008,130(12):121401.1-14. 
[18]Walters  D  K.Physical  Interpretation  of  Transition-sensitive RANS  Models  Employing the  Laminar  Kinetic  Energy  Concept[J]. ERCOFTAC  Bulletin,2009,80:61-67. 
[19]Taghavi-Zenouz R,Salari  M,Etemadi M.Prediction  of  Laminar, Transitional  and  Turbulent  Flow  Regimes,Based  on  Three  Equation k-ω  Turbulence  Model[J].The  Aeronautical  Journal,2008,112(1134):469-476. 
[20]Zheng X,Liu C,Liu F,et al.Turbulent Transition Simulation Using the k-ω   Model[J]. International Journal for Numerical Methods in Engineering, 1996,42(10):907-926. 
[21]Coupland  J.Special  Interest Group on Laminar to Turbulence Transition and Re Transition,T3A and T3B Test Cases[R]. London:ERCOFTAC,1990. 
[22]Lienhart  H,Becker  S.Flow  and  Turbulence  in  the  Wake  of  A  Simplified  Car Model[R].SAE,2003-01-0656. 
[23]李学武.某微车的气动特性分析及优化[D].长沙:湖南大学,2008. |