[1]朱海平, 刘繁茂, 刘琼, 等. 基于车间实时状态的订单完工周期预测方法[J]. 中国机械工程, 2009, 20(3):300-304.
ZHU Haiping, LIU Fanmao, LIU Qiong, et al. Application of Neural Network Ensemble in Prediction of Product Due Date[J]. China Mechanical Engineering, 2009, 20(3):300-304.
[2]ZHANG Y, REN S, LIU Y, et al. A Framework for Big Data Driven Product Lifecycle Management[J]. Journal of Cleaner Production, 2017, 159(15):229-240.
[3]李胜, 张培林, 李兵, 等. 基于量子遗传算法的轴向柱塞泵故障特征选择[J]. 中国机械工程, 2014, 25(12):1659-1644.
LI Sheng, ZHANG Peilin, LI Bin, et al.Fault Feature Selection Method for Axial Piston Pump Based on Quantum Genetic Algorithm[J]. China Mechanical Engineering, 2014, 25(12):1659-1644.
[4]张震, 魏鹏, 李玉峰, 等. 改进粒子群联合禁忌搜索的特征选择算法[J]. 通信学报, 2018, 39(12):64-72.
ZHANG Zhen, WEI Peng, LI Yufeng, et al. Feature Selection Algorithm Based on Improved Particle Swarm Joint Taboo Search[J]. Journal on Communications, 2018, 39(12):64-72.
[5]翟俊海, 刘博, 张素芳. 基于粗糙集相对分类信息熵和粒子群优化的特征选择方法[J]. 智能系统学报, 2017, 12(3):397-404.
ZHAI Junhai, LIU Bo, ZHANG Sufang. A Feature Selection Approach Based on Rough Set Relative Classification Information Entropy and Particle Swarm Optimization[J]. CAAI Transactions on Intelligent Systems, 2017, 12(3):397-404.
[6]ZHONG J, WANG J, PENG W, et al. A Feature Selection Method for Prediction Essential Protein[J]. Tsinghua Science and Technology, 2015, 20(5):491-499.
[7]DY J G, BRODLEY C E. Feature Selection for Unsupervised Learning[J]. Journal of Machine Learning Research, 2004, 5(4):845-889.
[8]CAI J , LUO J , WANG S , et al. Feature Selection in Machine Learning:a New Perspective[J]. Neurocomputing, 2018, 300(26):70-79.
[9]朱雪初, 乔非. 基于工业大数据的晶圆制造系统加工周期预测方法[J]. 计算机集成制造系统, 2017, 23(10):2172-2179.
ZHU Xuechu, QIAO Fei. Cycle Time Prediction Method of Wafer Fabrication System Based on Industrial Big Data[J]. Computer Integrated Manufacturing Systems, 2017, 23(10):2172-2179.
[10]PENG H , LONG F , DING C . Feature Selection Based on Mutual Information:Criteria of Max-dependency, Max-relevance, and Min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8):1226-1238.
[11]夏虎, 庄健, 周璠, 等. 采用多目标进化模型的无监督故障特征选择算法[J]. 振动与冲击, 2014, 33(8):61-65.
XIA Hu, ZHUANG Jian, ZHOU Fan, et al. Unsupervised Feature Selection Algorithm with a Multi-objective Evolutionary Model for Fault Diagnosis[J]. Journal of Vibration and Shock,2014,33(8):61-65.
[12]NOVOVICOVA J , PUDIL P , KITTLER J. Divergence Based Feature Selection for Multimodal Class Densities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(2):218-223.
[13]LIU H, WU X, ZHANG S. Feature Selection Using Hierarchical Feature Clustering[C]∥International Conference on Information and Knowledge Management.Glasgow, 2011:979-984.
[14]ZHOU P , CHAN K. An Unsupervised Attribute Clustering Algorithm for Unsupervised Feature Selection[C]∥Data Science and Advanced Analytics (DSAA).Paris, 2015:1-7.
[15]WITTEN D , TIBSHIRANI R. A Framework for Feature Selection in Clustering[J]. Journal of the American Statistical Association, 2010, 105(490):713-726.
[16]WANG C, JIANG P . Deep Neural Networks Based Order Completion Time Prediction by Using Real-time Job Shop RFID Data[J]. Journal of Intelligent Manufacturing, 2017, 30(3):1303-1318.
[17]KINNEY J, ATWAL G. Equitability, Mutual Information, and the Maximal Information Coefficient[J]. Proceedings of the National Academy of Sciences, 2014, 111(9):3354-3359.
[18]VERGARA J, ESTVEZ P. A Review of Feature Selection Methods Based on Mutual Information[J]. Neural Computing and Applications, 2014, 24(1):175-186.
[19]MINGOTI S, LIMA J. Comparing SOM Neural Network with Fuzzy C-means, K-means and Traditional Hierarchical Clustering Algorithms[J]. European Journal of Operational Research, 2006, 174(3):1742-1759.
[20]SUN H, WANG S, JIANG Q. FCM-based Model Selection Algorithms for Determining the Number of Clusters[J]. Pattern Recognition, 2004, 37(10):2027-2037.
[21]CHEN T. Embedding a Back Propagation Network into Fuzzy C-means for Estimating Job Cycle Time:Wafer Fabrication as an Example[J]. Journal of Ambient Intelligence and Humanized Computing, 2016, 7(6):789-800.
[22]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a Simple Way to Prevent Neural Networks from Overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958.
|