[1]刘欢, 陶功权, 蔡晶, 等. 车轮多边形态下机车轮轨动态响应研究[J]. 振动与冲击, 2020, 39(16):16-22.
LIU Huan, TAO Gongquan, CAI Jing, et al. Influence of Wheel Polygon on Locomotive Wheel-rail Dynamic Response[J]. Journal of Vibration and Shock, 2020, 39(16):16-22.
[2]陶功权, 温泽峰, 金学松. 铁道车辆车轮非圆化磨耗形成机理及控制措施研究进展[J]. 机械工程学报, 2021, 57(6):106-120.
TAO Gongquan, WEN Zefeng, JIN Xuesong. Advances in Formation Mechanism and Mitigation Measures of Out-of-round Railway Vehicle Wheels[J]. Journal of Mechanical Engineering, 2021, 57(6):106-120.
[3]沈明学, 容彬, 李圣鑫, 等. 车轮踏面不圆顺对高速列车轮轨界面黏着与车轮表面损伤的影响[J]. 中国机械工程, 2022, 33(22):2664-2672
SHEN Mingxue, RONG Bin, LI Shengxin, et al. Effects of Wheel Tread Out-of-roundness on Wheel-rail Interface Adhesions and Wheel Surface Damages of High-speed Trains[J]. China Mechanical Engineering, 2022, 33(22):2664-2672.
[4]WU S C, XU Z W, KANG G Z, et al. Probabilistic Fatigue Assessment for High-speed Railway Axles due to Foreign Object Damages[J]. International Journal of Fatigue, 2018, 117:90-100.
[5]ZERBST U, MADIA M, KLINGER C, et al. Defects as a Root Cause of Fatigue Failure of Metallic Components. Ⅲ:Cavities, Dents, Corrosion Pits, Scratches[J]. Engineering Failure Analysis, 2019, 97:759-776.
[6]ZHAO Xin, WU Shengchuan, BAO Jianguang, et al. Experimental Characterization and Numerical Modeling on the External Impacting of High-speed Railway Axle EA4T Steel[J]. Engineering Failure Analysis, 2021, 125:105449.
[7]吴毅, 尹鸿祥, 张澎湃, 等. 含异物击打伤高速动车组车轴疲劳寿命预测[J]. 中国铁道科学, 2021, 42(2):116-124.
WU Yi, YIN Hongxiang, ZHANG Pengpai, et al. Fatigue Life Prediction of High-speed EMU Axle with Foreign Object Damage[J]. China Railway Science, 2021, 42(2):116-124.
[8]XU Z W, WU S C, WANG X S. Fatigue Evaluation for High-speed Railway Axles with Surface Scratch[J]. International Journal of Fatigue, 2019, 123:79-86.
[9]周素霞, 孙宇铎, 吴毅, 等. 车轴表面不同冲击缺陷的疲劳参数试验与仿真[J]. 中国科技论文, 2021, 16(10):1080-1086.
ZHOU Suxia, SUN Yuduo, WU Yi, et al. Fatigue Parameters Test and Simulation of Different Impact Defects on Axle Surface[J]. China Sciencepaper, 2021, 16(10):1080-1086.
[10]唐凯, 周留成, 何卫峰, 等. 激光冲击强化对LZ50车轴钢疲劳性能影响试验研究[J]. 中国机械工程, 2020, 31(3):267-273.
TANG Kai, ZHOU Liucheng, HE Weifeng, et al.Experimental Study on Influences of Laser Shock Processing on Fatigue Performance of LZ50 Axle Steels[J]. China Mechanical Engineering, 2020, 31(3):267-273.
[11]LUO Yan, QIN Tianya, JIA Xu, et al. Fatigue Life Enhancement of Foreign Object Impacted Railway Axle EA4T Steel with Surface Shot Peening[J]. Engineering Failure Analysis, 2022, 142:106782
[12]王连庆, 罗艳, 吴圣川, 等. 喷丸强化对异物致损车轴钢疲劳性能的影响[J]. 机械设计与制造, 2021(9):98-101.
WANG Lianqing, LUO Yan, WU Shengchuan, et al. Influence of Shot Peening on Fatigue Strength of Railway Axle Steel Subjected to Foreign Object Damages[J]. Machinery Design & Manufacture, 2021(9):98-101.
[13]HU Yanan, WU Shengchuan, WITHERS P J, et al. Corrosion Fatigue Lifetime Assessment of High-speed Railway Axle EA4T Steel with Artificial Scratch[J]. Engineering Fracture Mechanics, 2021, 245:107588.
[14]张富兵. 车轮多边形对动车组轮对系统振动的影响研究[D]. 成都:西南交通大学, 2019.
ZHANG Fubing. Research on the Influence of Wheel Polygonalization on Vibration of EMU Wheelset System[D]. Chengdu:Southwest Jiaotong University, 2019.
[15]吕晓旭. 典型缺陷对车轴应力及疲劳寿命影响研究[D]. 北京:北京交通大学, 2019.
LYU Xiaoxu. Study the Influence of Typical Defects on Axles Stress and Fatigue Life[D].Beijing:Beijing Jiaotong University, 2019.
[16]吴丹, 丁旺才, 商跃进, 等. 考虑车轮谐波磨耗的动车组车轴疲劳寿命[J]. 中国铁道科学, 2020, 41(3):111-119.
WU Dan, DING Wangcai, SHANG Yuejin, et al. Fatigue Life of EMU Axle Considering Harmonic Wear of Wheel[J]. China Railway Science, 2020, 41(3):111-119.
[17]LIU Kai, JING Lin. A Finite Element Analysis-based Study on the Dynamic Wheel-rail Contact Behaviour Caused by Wheel Polygonization[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2020, 234(10):1285-1298.
[18]林凤涛, 黄琴, 张海, 等. CRH3高速列车多边形磨耗车轮通过钢轨波磨区段的轮轨力研究[J]. 铁道科学与工程学报, 2021, 18(7):1706-1714.
LIN Fengtao, HUANG Qin, ZHANG Hai, et al. Study on Wheel-rail Force of CRH3 High Speed Train with Wheel Polygon when Passing Corrugation Rail[J]. Journal of Railway Science and Engineering, 2021, 18(7):1706-1714.
[19]WU Zhirong, HU Xuteng, LI Zhaoxia, et al. Evaluation of Fatigue Life for Titanium Alloy TC4 under Variable Amplitude Multiaxial Loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38(4). 402-209.
[20]廖贞. 拉扭复合载荷作用下LZ50钢疲劳短裂纹行为研究[D]. 成都:西南交通大学, 2018.
LIAO Zhen. Study on Short Fatigue Crack Behavior of LZ50 Steel under Tension-torsion Loading[D].Chengdu:Southwest Jiaotong University, 2018.
[21]LIAO Zhen, YANG Bing, QIN Yahang, et al. Short Fatigue Crack Behaviour of LZ50 Railway Axle Steel under Multi-axial Loading in Locw-cycle Fatigue[J]. International Journal of Fatigue, 2020, 132:105366.
[22]高闯, 孙守光, 任尊松, 等. 车轮多边形对高速列车车轴疲劳强度影响研究[J]. 机械工程学报, 2023, 59(6):185-193.
GAO Chuang, SUN Shouguang, REN Zunsong, et al. Study on the Influence of Wheel Polygon on the Fatigue Strength of High-speed Train Axle[J]. Journal of Mechanical Engineering, 2023, 59(6):185-193.
|