[1]杜金辉, 赵光普, 邓群, 等. 中国变形高温合金研制进展[J]. 航空材料学报, 2016, 36(3):27-39.
DU Jinhui, ZHAO Guangpu, DENG Qun, et al. Development of Wrought Superalloys in China[J]. Journal of Aeronautical Materials, 2016, 36(3):27-39.
[2]张冬旭, 温志勋, 岳珠峰. GH3230高温合金热变形行为及本构模型研究[J]. 稀有金属, 2014, 38(6):986-992.
ZHANG Dongxu, WEN Zhixun, YUE Zhufeng. Study on Hot Deformation Behavior and Constitutive Model of GH3230 Superalloy[J]. Rare metals, 2014, 38(6):986-992.
[3]高亚伟, 董建新, 姚志浩, 等. GH5188高温合金组织特征及冷热加工过程组织演变[J]. 稀有金属材料与工程, 2017, 46(10):2922-2928.
GAO Yawei, DONG Jianxin, YAO Zhihao, et al. Microstructure Characteristics and Microstructure Evolution during Cold and Hot Working of GH5188 Superalloy[J]. Rare Metal Materials and Engineering, 2017, 46(10):2922-2928.
[4]吴向宇, 黎旭, 时艳, 等. 典型层板冷却结构热疲劳破坏特性研究[J]. 航空动力学报, 2014, 29(5):1177-1183.
WU Xiangyu, LI Xu, SHI Yan, et al. Study on Thermal Fatigue Failure Characteristics of Typical Laminate Cooling Structures[J]. Journal of Aerodynamics, 2014, 29(5):1177-1183
[5]TUNTHAWIROON P, LI Y, KOIZUMI Y, et al. Strain-Controlled ISO—Thermal Fatigue Behavior of Co-29Cr-6Mo Used for Tooling Materials in Al Die Casting[J]. Materials Science and Engineering:A, 2017, 703:27-36.
[6]张仕朝, 于慧臣, 李影. 不同应变比下GH3030合金的高温低周疲劳行为[J]. 机械工程材料, 2014, 38(1):56-59.
ZHANG Shichao, YU Huichen, LI Ying. High Temperature Low Cycle Fatigue Behavior of GH3030 Alloy at Different Strain Ratios[J]. Mechanical Engineering Materials, 2014, 38(1):56-59.
[7]李锦娟, 王泓, 张建国. GH3030合金高温应变疲劳行为分析[J]. 热加工工艺, 2011, 40(18):44-47.
LI Jinjuan, WANG Hong, ZHANG Jianguo. High Temperature Strain Fatigue Behavior Analysis of GH3030 Alloy[J]. Hot Working Process, 2011, 40(18):44-47.
[8]蔡显杰, 吴博雅, 左鹏鹏, 等. 压铸模镶块的热疲劳失效行为[J]. 金属热处理, 2022, 47(2):250-257.
CAI Xianjie, WU Boya, ZUO Pengpeng, et al. Thermal Fatigue Failure Behavior of Die Casting Die Inserts[J]. Metal Heat Treatment, 2022, 47(2):250-257.
[9]唐文书, 肖俊峰, 高松, 等. Nimonic263合金薄板激光焊热源模型及参数研究[J]. 热加工工艺, 2019, 48(19):131-136.
TANG Wenshu, XIAO Junfeng, GAO Song, et al. Study on Heat Source Model and Parameters of Laser Welding Nimonic263 Alloy Sheet[J]. Hot working process, 2019, 48(19):131-136.
[10]孙坤, 王洪斌, 张树林, 等. 基于热响应的陶瓷基复合材料火焰筒热冲击试验[J]. 航空发动机, 2021, 47(3):86-90.
SUN Kun, WANG Hongbin, ZHANG Shulin, et al. Thermal Shock Test of Ceramic Matrix Composite Flame Tube Based on Thermal Response[J]. Aeroengine, 2021, 47(3):86-90.
[11]骆文泽, 成慧梅, 刘红艳.高强钢Q960E对接接头残余应力与焊接变形的数值模拟[J]. 中国机械工程, 2023, 34(17):2095-2105.
LUO Wenze, CHENG Huimei, LIU Hongyan. Numerical Simulation of Residual Stress and Welding Deformation in High-strength Steel Q960E Butt Joints[J]. China Mechanical Engineering, 2023, 34(17):2095-2105.
[12]TONG L W, HUANG X W, ZHOU F, et al. Experimental and Numerical Investigations on Extremely-low-cycle Fatigue Fracture Behavior of Steel Welded joints[J]. Journal of Constructional Steel Research, 2016, 119:98-112.
[13]童第华, 陈志伟. 局部应变法预测飞机结构带孔部件疲劳寿命[J]. 航空材料学报, 2011, 31(5):86-90.
TONG Dihua, CHEN Zhiwei. Prediction of Fatigue Life of Perforated Components of Aircraft Structures by Local Strain Method[J]. Journal of Aeronautical Materials, 2011, 31(5):86-90.
[14]王伟, 吕春堂, 刘兵, 等. Haynes 230镍基超合金高温低周疲劳寿命预测[J]. 压力容器, 2018, 35(5):22-27.
WANG Wei,LYU Chuntang,LIU Bing. Prediction of High Temperature Low Cycle Fatigue Life of Haynes 230 Nickel-base Superalloy[J]. Pressure Vessel Technology, 2018, 35(5):22-27.
[15]吴英龙, 宣海军, 单晓明. 离心轮内部疲劳裂纹扩展及其无损定量表征[J]. 中国机械工程, 2021, 32(6):658-665.
WU Yinglong, XUAN Haijun, SHAN Xiaoming. Internal Fatigue Crack Propagation and Non-destructive Quantitative Characterization of Centrifugal Wheels[J]. China Mechanical Engineering, 2021, 32(6):658-665.
[16]曹蕾蕾, 康凡军, 郭城臣. 变速箱中间轴焊接结构多轴疲劳寿命分析方法[J]. 中国机械工程, 2023, 34(13):1605-1610.
CAO Leilei, KANG Fanjun, GUO Chengchen. Multi Axis Fatigue Life Analysis Method for Welded Structure of Gearbox Intermediate Shaft[J]. China Mechanical Engineering, 2023, 34(13):1605-1610.
|