中国机械工程 ›› 2024, Vol. 35 ›› Issue (07): 1269-1278.DOI: 10.3969/j.issn.1004-132X.2024.07.015

• 智能制造 • 上一篇    下一篇

具有紧时、高能耗特征的混合流水车间多目标调度优化问题

常大亮1,2,3;史海波1,2;刘昶1,2   

  1. 1.中国科学院沈阳自动化研究所,沈阳,110016
    2.中国科学院机器人与智能制造创新研究院,沈阳,110169
    3.中国科学院大学,北京,100049

  • 出版日期:2024-07-25 发布日期:2024-08-14
  • 作者简介:常大亮,男,1981年生,硕士研究生。研究方向为机械制造及其自动化、生产调度优化、生产制造执行系统。发表论文10余篇。E-mail:daliang@sia.cn。
  • 基金资助:
    辽宁省应用基础研究计划(2023JH2/101300184)

Multi-objective Scheduling Optimization for Hybrid Flow Shops with Limited Waiting Time and High Energy Consumption

CHANG Daliang1,2,3;SHI Haibo1,2;LIU Chang1,2   

  1. 1.Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang,110016
    2.Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,
    Shenyang,110169
    3.University of Chinese Academy of Sciences,Beijing,100049

  • Online:2024-07-25 Published:2024-08-14

摘要: 针对具有紧时、高能耗工序特征的混合流水车间调度问题,以优化产品暴露时间、最大完工时间和能源消耗为目标,建立混合流水车间调度模型,并提出一种改进的多目标粒子群算法进行有效求解。首先构建了基于ISDE指标的档案维护策略及局部邻域搜索策略,辅助算法跃出局部极值及减少生产阻塞。之后,提出一种基于模糊理论的决策分析方法选取最优调度方案。最后,通过仿真实验验证提出的多目标调度模型与算法的可行性和优越性。

关键词: 混合流水车间调度问题, 多目标粒子群优化算法, 紧时性约束, 高能耗

Abstract: In order to solve the hybrid flow shop scheduling problems with tight time and high energy consumption process characteristics, a hybrid flow shop scheduling model was established with the objectives of optimizing product exposure time, maximum completion time, and energy consumption. An improved multi-objective particle swarm optimization algorithm was proposed to optimize the hybrid flow shop scheduling problems effectively. Firstly, based on ISDE indicator and a local neighborhood search strategy the archive maintenance strategy was constructed to assist the algorithm to jump out of local extreme values and reduce production congestion. Then, based on fuzzy theory a decision analysis method was proposed to select the optimal scheduling. Finally, by simulation experiments, the feasibility and superiority of the proposed multi-objective scheduling model and optimization algorithm were verified. 

Key words: hybrid flow shop scheduling problem, multi-objective particle swarm optimization algorithm, tight time constraint, high energy consumption

中图分类号: