[1]LI Yingli, LI Fan, PAN Quanke, et al. An Artificial Bee Colony Algorithm for the Distributed Hybrid Flowshop Scheduling Problem[J]. Procedia Manufacturing, 2019(39):1158-1166.
[2]NI Fei, HAO Jianye, LU Jiawen, et al. A Multi-Graph Attributed Reinforcement Learning based Optimization Algorithm for Large-scale Hybrid Flow Shop Scheduling Problem[C]∥27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Singapore, 2021:3441-3451.
[3]YANG Yahong, LI Xun. A Knowledge-driven Constructive Heuristic Algorithm for the Distributed Assembly Blocking Flow Shop Scheduling Problem[J]. Expert Syst. Appl., 2022, 202:117269.
[4]CHEN Shuai, PAN Quanke, GAO Liang. Production Scheduling for Blocking Flowshop in Distributed Environment Using Effective Heuristics and Iterated Greedy Algorithm[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71:102155.
[5]ZHANG Chenyao, HAN Yuyan, WANG Yuting, et al. A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-factory Collaboration Iterated Greedy Algorithm[J]. Mathematics, 2023, 11(3):581.
[6]孟磊磊, 张超勇, 张彪, 等. 面向节能的阻塞混合流水车间调度问题建模[J]. 华中科技大学学报(自然科学版), 2021, 49(7):127-132.
MENG Leilei, ZHANG Chaoyong, ZHANG Biao, et al. Modeling of Energy-saving Blocking Hybrid Flow Shop Scheduling Problem[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2021, 49(7):127-132.
[7]秦浩翔, 韩玉艳, 陈庆达, 等. 求解阻塞混合流水车间调度的双层变异迭代贪婪算法[J]. 控制与决策, 2022, 37(9):2323-2332.
QIN Haoxiang, HAN Yuyan, CHEN Qingda, et al. A Double Level Mutation Iterated Greedy Algorithm for Blocking Hybrid Flow Shop Scheduling[J]. Control and Decision, 2022, 37(9):2323-2332.
[8]RIBAS I, COMPANYS R, TORT-MARTORELL X. An Iterated Greedy Algorithm for the Parallel Blocking Flow Shop Scheduling Problem and Sequence-dependent Setup Times[J]. Expert Systems with Applications, 2021, 184(2):115535.
[9]董君, 叶春明. 区间数可重入混合流水车间调度与预维护协同优化[J]. 控制与决策, 2021, 36(11):2599-2608.
DONG Jun, YE Chunming. Collaborative Optimization of Interval Number Reentrant Hybrid Flow Shop Scheduling and Preventive Maintenance[J]. Control and Decision, 2021, 36(11):2599-2608.
[10]赵付青, 杜松霖, 曹洁, 等. 分布式装配阻塞流水车间调度算法研究[J]. 华中科技大学学报(自然科学版), 2022, 50(5):138-142.
ZHAO Fuqing, DU Songlin, CAO Jie, et al. Study on Distributed Assembly Blocking Flow Shop Scheduling Algorithm[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50(5):138-142.
[11]罗焕, 陈浩杰, 宋小欣, 等. 带有缓存约束的作业车间调度求解方法[J]. 计算机集成制造系统, 2021, 27(10):2880-2888.
LUO Huan, CHEN Haojie, SONG Xiaoxin, et al. Job Shop Scheduling with Buffer Constraint[J]. Computer Integrated Manufacturing Systems, 2021, 27(10):2880-2888.
[12]陈广锋, 韩玮. 基于最小负荷初始化的改进遗传算法求解柔性作业车间调度问题[J]. 信息与控制, 2021, 50(3):374-384.
CHEN Guangfeng, HAN Wei. Improved Genetic Algorithm Based on Minimum-load Initialization to Solve Flexible Job-shop Scheduing Problem[J]. Information and Control, 2021, 50(3):374-384.
[13]易茜,何爽,宁轻,等.汽车试制车间考虑员工作业能力的多目标优化生产调度[J].中国机械工程,2021,32(13):1617-1629.
YI Qian, HE Shuang, NING Qing,et al. Multi-objective Optimization of Production Scheduling in Automobile Trial Production Workshop Considering Working Ability of Employees[J]. China Mechanical Engineering, 2021, 32(13):1617-1629.
[14]XIONG Xiong, JI Yu, WU Ming, et al. Microgrid Power Optimal Control with Markov Decision Process by Using the Specific Policy of Wavelet Packet-fuzzy Control[C]∥2018 2nd IEEE Conference on Energy Internet and Energy System Integration(EI2). Beijing:IEEE, 2018:1-9.
[15]张伟, 黄卫民. 基于种群分区的多策略自适应多目标粒子群算法[J]. 自动化学报, 2022, 48(10):2585-2599.
ZHANG Wei, HUANG Weimin. Multi-strategy Adaptive Multi-objective Particle Swarm Optimization Algorithm Based on Swarm Partition[J]. Acta Automatica Sinica, 2022, 48(10):2585-2599.
[16]刘天宇, 王翥. 一种多样性控制的多目标粒子群算法[J]. 西安电子科技大学学报, 2021, 48(3):106-114.
LIU Tianyu, WANG Zhu. Diversity Controlled Multiobjective Particle Swarm Optimization[J]. Journal of Xidian University, 2021, 48(3):106-114.
[17]WANG Kaipu, LI Xinyu, GAO Liang, et al. A Discrete Artificial Bee Colony Algorithm for Multiobjective Disassembly Line Balancing of End-of-life Products[J]. IEEE Transactions on Cybernetics, 2022, 52(8):7415-7426.
[18]赵新秋, 段思雨, 马学敏. 基于调节算子的多目标人工蜂群算法[J]. 系统工程学报, 2021, 36(5):602-611.
ZHAO Xinqiu, DUAN Siyu, MA Xuemin. Multi-objective Artificial Bee Colony Algorithm Based on Regulation Operators[J]. Journal of Systems Engineering, 2021, 36(5):602-611.
[19]PAL P, TRIPATHI S, KUMAR C. Bandwidth Estimation in High Mobility Scenarios of MANET Using NSGA-Ⅱ Optimized Fuzzy Inference System[J]. Applied Soft Computing, 2022,123:108936.
[20]栗三一, 王延峰, 乔俊飞, 等. 一种基于区域局部搜索的NSGA Ⅱ算法[J]. 自动化学报, 2020, 46(12):2617-2627.
LI Sanyi, WANG Yanfeng, QIAO Junfei, et al. A Regional Local Search Strategy for NSGA Ⅱ Algorithm[J]. Acta Automatica Sinica, 2020, 46(12):2617-2627.
[21]沈春娅, 雷钧杰, 汝欣, 等. 基于改进型NSGAⅡ的织造车间多目标大规模动态调度[J]. 纺织学报, 2022, 43(4):74-83.
SHEN Chunya, LEI Junjie, RU Xin, et al. Multi-objective Large-scale Dynamic Scheduling for Weaving Workshops Based on Improved NSGAⅡ[J]. Journal of Textile Research, 2022, 43(4):74-83.
[22]ZHAO Liang, ZHANG Qingfu. Hypervolume-Guided Decomposition for Parallel Expensive Multiobjective Optimization[J]. IEEE Transactions on Evolutionary Computation, 2024, 28(2):432-444.
|