中国机械工程 ›› 2023, Vol. 34 ›› Issue (14): 1647-1658,1671.DOI: 10.3969/j.issn.1004-132X.2023.14.002

• 可持续柔性智能制造 • 上一篇    下一篇

采用改进两点交叉算子的改进自适应遗传算法求解不相关并行机混合流水车间调度问题

郑堃1,2;练志伟1;顾新艳1,2;朱长建1,2;徐慧3;冯雪晴3   

  1. 1.南京工程学院汽车与轨道交通学院,南京,211167
    2.中德智能制造研究院,南京,211800
    3.大全集团有限公司,镇江,212211
  • 出版日期:2023-07-25 发布日期:2023-07-28
  • 作者简介:郑堃,男,1984年生,副教授。研究方向为智能制造、制造系统建模与优化、一体化企业建模、敏捷集成。发表论文30余篇,出版学术专著2部。E-mail: KunZheng@njit.edu.cn。
  • 基金资助:
    国家重点研发计划(2018YFE011700);国家自然科学基金(51805244);南京工程学院人才引进基金(YKJ202028)

Hybrid Flow Shop Scheduling Problems with Unrelated Parallel Machine Solved by Improved Adaptive Genetic Algorithm(IAGA) with ITPX

ZHENG Kun1,2;LIAN Zhiwei1;GU Xinyan1,2;ZHU Changjian1;XU Hui3;FENG Xueqing3   

  1. 1.School of Automotive and Rail Transit,Nanjing Institute of Technology,Nanjing,211167
    2.Sino-German Intelligent Manufacturing Research Institute,Nanjing,211800
    3.Daqo Group Co.,Ltd.,Zhenjiang,Jiangsu,212211
  • Online:2023-07-25 Published:2023-07-28

摘要: 针对不相关并行机的混合流水车间调度问题,提出了改进两点交叉算子(ITPX)的自适应遗传算法。首先,利用精确取点方式提高两点交叉算子的求解性能;其次,论证了基于激素调节的自适应选择概率引导种群的收敛趋势;然后,建立优质染色体池和记忆因子来记录种群迭代的优质解,并实现两种不同区域的交叉。实验结果表明,ITPX可节省优化时间,提高求解性能;自适应概率可增强收敛性;改进两点交叉算子的改进自适应遗传算法(ITPX-IAGA)可缩短40%以上的求解时间,并提高求解性能。

关键词: 混合流水车间调度问题, 不相关并行机, 自适应遗传算法, 改进两点交叉算子, 激素调节机制

Abstract: Aiming at the hybrid flow-shop scheduling problems, an adaptive genetic algorithm with ITPX was proposed. Firstly, the solution performance of two-points crossover(TPX) was improved by exacting point taking method. Secondly, adaptive selection probability was demonstrated based on hormonal regulation guiding convergence trend of populations. Then, a pool of high-quality chromosomes and a memory factor were established to record the high-quality chromosomes during population evolution, and two different regional crossovers were implemented. Experimentsal results show that ITPX may save optimization time and improve solution performance; the adaptive probability may enhance convergence; ITPX-IAGA may reduce solution time by more than 40% and improve solution performance.

Key words:  hybrid flow-shop scheduling problem, unrelated parallel machine, adaptive genetic algorithm(AGA), improved two-points crossover(ITPX), hormone regulation mechanism

中图分类号: