[1]CAI W, LIU F, XIE J et al. An Energy Management Approach for the Mechanical Manufacturing Industry through Developing a Multi-objective Energy Benchmark[J]. Energy Conversion and Management, 2017, 132:361-371.
[2]BALOGUN V A, MATIVENGA P T. Modelling of Direct Energy Requirements in Mechanical Machining Processes[J]. Journal of Cleaner Production, 2013, 41, 179-186.
[3]李进宇,王秋莲,张炎. 基于递归分析的混流生产模式机械加工过程能效分析和状态监测[J]. 计算机集成制造系统, 2021, 27(5):1341-1350.
LI Jinyu, WANG Qiulian, ZHANG Yan. Energy Efficiency Analysis and State Monitoring of Machining Processes in Mixed Flow Production Mode Based on Recurrence Analysis[J]. Computer Integrated Manufacturing System, 2021, 27(5):1341-1350.
[4]GUTOWSKI T, DAHMUS J, THIRIEZ A. Electrical Energy Requirements for Manufacturing Processes[C]∥13th CIRP International Conference on Life Cycle Engineering. Leuven, Belgium:CIRP, 2006, 5:560-564.
[5]徐敬通, 李涛, 陈俊超, 等. 数控机床的能耗模型及实验研究[J]. 中南大学学报(自然科版), 2017, 48(8):2024-2033.
XU Jingtong, LI Tao, CHEN Junchao, et al. An Energy Consumption Model and Experimental Research of Numerical Control Machine Tools[J]. Journal of Central South University(Science and Technology), 2017, 48(8):2024-2033.
[6]谢俊, 马婧华, 罗小. 面向节能优化的机床能耗模型及切削参数决策方法研究[J]. 重庆理工大学学报(自然科学), 2020, 34(8):77-86.
XIE Jun, MA Jinghua, LUO Xiao. Study on Energy Consumption Model and Cutting Parameter Decision Method of Machine Tool Oriented to Energy Saving Optimization[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(8):77-86.
[7]SHI K N, ZHANG D H, LIU N, et al. A Novel Energy Consumption Model for Milling Process Considering Tool Wear Progression[J]. Journal of Cleaner Production, 2018, 184:152-159.
[8]YOON H, MOON J, PHAM M et al. Control of Machining Parameters for Energy and Cost Savings in Micro-scale Drilling of PCBs[J]. Journal of Cleaner Production, 2013, 54(9):41-48.
[9]刘博. 考虑刀具磨损的机床能耗建模及多目标优化方法研究[D]. 哈尔滨:哈尔滨工业大学, 2017.
LIU Bo. Modeling and Multi-objective Optimization of Machine Tool Energy Consumption Considering Tool Wear[D]. Harbin:Harbin Institute of Technology, 2017.
[10]李聪波, 尹誉先, 肖溱鸽, 等. 数据驱动下基于元动作的数控车削能耗预测方法[J]. 中国机械工程, 2020, 31(21):2601-2611.
LI Congbo, YIN Tengxian, XIAO Qinge, et al. Data-driven Energy Consumotion Prediction Method of CNC Tureing Based on Metaaction[J]. China Mechanical Engineering, 2020, 31(21):2601-2611.
[11]张洁, 汪俊亮, 吕佑龙, 等. 大数据驱动的智能制造[J]. 中国机械工程, 2019, 30(2):127-133.
ZHANG Jie, WANG Junliang, LYU Youlong, et al. Big Data Driven Intelligent Manufacturing[J]. China Mechanical Engineering, 2019, 30(2):127-133.
[12]LU F Y, ZHOU G H, LIU Y, et al. Ensemble Transfer Learning for Cutting Energy Consumption Prediction of Aviation Parts towards Green Manufacturing[J]. Journal of Cleaner Production, 2022, 331:129920.
[13]XU L H, HUANG G N, LI C W, et al. A Novel Intelligent Reasoning System to Estimate Energy Consumption and Optimize Cutting Parameters toward Sustainable Machining[J]. Journal of Cleaner Production, 2020:121160.
[14]肖小平, 李晶晶, 张超,等. 基于ANN的加工零件表面粗糙度和能耗预测方法[J]. 应用科技, 2021, 48(6):63-69.
XIAO Xiaoping, LI Jingjing, ZHANG Chao, et al. Prediction Method of Surface Roughness and Energy Consumption of Machined Parts Based on ANN[J]. Applied Science and Technology, 2021, 48(6):63-69.
[15]杨晶显, 张帅, 刘继春,等.基于VMD和双重注意力机制LSTM的短期光伏功率预测[J].电力系统自动化, 2021, 45(3):174-182.
YANG Jingxian, ZHANG Shuai, LIU Jichun, et al. Short-term Photovoltaic Power Prediction Based on VMD and Dual-attention Mechanism LSTM[J]. Automation of Electric Power Systems, 2021, 45(3):174-182.
[16]孙国梁, 李保健, 徐冬梅,等. 基于VMD-SSA-LSTM的月径流预测模型及应用[J].水电能源科学,2022,40(5):18-21.
SUN Guoliang, LI Baojian, XU Dongmei, et al. Monthly Runoff Prediction Model and Its Application Based on VMD-SSA-LSTM[J]. Water Resources and Hydropower Engineering, 2022, 40(5):18-21.
[17]阳曾, 丁施尹, 叶萌,等. 基于变分模态分解和深度学习的短期电力负荷预测模型[J].电测与仪表, 2023, 60(2):126-131.
YANG Zeng, DING Shiyin, YE Meng, et al. Short-term Power Load Forecasting Model Based on Variational Mode Decomposition and Deep Learning[J]. Electrical Measurement & Instrumentation, 2023, 60(2):126-131.
[18]赵玉. 基于CCD视觉系统的刀具磨损测量方法[J]. 山东农业大学学报(自然科学版), 2020, 51(3):500-502
ZHAO Yu. The Approach to Measure a Tool Wear Based on CCD Vision System[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2020, 51(3):500-502.
[19]王利强. 基于机器视觉的车削刀具磨损状态检测研究[D].济南:山东建筑大学, 2020.
WANG Liqiang. Research on Cutting Tool-wear State Detection Based on Machine Vision[D]. Jinan:Shandong Jianzhu University, 2020.
[20]成都工具研究所有限公司. 面铣刀寿命试验GB/T 16459—2016/1S08688-1:1989[S]. 北京:中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会.
Chengdu Tool Research Co., Ltd. Face Milling Cutter Life Test GB/T 16459—2016/1S08688-1:1989[S]. Beijing:General Administration of Quality Supervision, Inspection, and Quarantine of the Peoples Republic of China. China National Standardization Management Committee.
[21]DRAGOMIRETSKIY K, ZOSSO D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[22]薛建凯. 一种新型的群智能优化技术的研究与应用:麻雀搜索算法[D]. 上海:东华大学.
XUE Jiankai. Research and Application of a Novel Swarm Intelligence Optimization Technique:Sparrow Search Algorithm[D]. Shanghai:Donghua University, 2020.
[23]YOON H, LEE J, KIM M, et al. Empirical Power-consumption Model for Material Removal in Three-axis Milling[J]. Journal of Cleaner Production, 2014,78:54-62.
|