[1]LAGODA T, GLOWACKA K. Fatigue Life Prediction of Welded Joints from Nominal System to Fracture Mechanics[J]. International Journal of Fatigue, 2020, 137:105647.
[2]KANG Guozheng, LUO Huiliang. Review on Fatigue Life Prediction Models of Welded Joint[J]. Acta Mechanica Sinica, 2020, 36:701-726.
[3]CORIGLIANO P, CRUPI V. Review of Fatigue Assessment Approaches for Welded Marine Joints and Structures[J]. Metals, 2022, 12(6):1010.
[4]LI Shanlin, LIU Qu, RUI Shaoshi, et al. Fatigue Crack Initiation Behaviors around Defects Induced by Welding Thermal Cycle in Superalloy IN617B[J]. International Journal of Fatigue, 2022:106745.
[5]顾颖, 冯倩, 任松波, 等. 焊接残余应力对对接接头疲劳裂纹扩展的影响[J]. 铁道科学与工程学报, 2021, 18(10):2752-2760.
GU Ying, FENG Qian, REN Songbo, et al. Effect of Welding Residual Stress on Fatigue Crack Growth Behavior of Butt Joint[J]. Journal of Railway Science and Engineering, 2021, 18(10):2752-2760.
[6]GADALLAH R, MURAKAWA H, SHIBAHARA M. Investigation of Thickness and Welding Residual Stress Effects on Fatigue Crack Growth[J]. Journal of Constructional Steel Research, 2023, 201:107760.
[7]NGOULA D, BEIER H, VORMWALD M. Fatigue Crack Growth in Cruciform Welded Joints:Influence of Residual Stresses and of the Weld Toe Geometry[J]. International Journal of Fatigue, 2016, 101:253-262.
[8]TSUTSUMI S, FINCATO R, LUO P J, et al. Effects of Weld Geometry and HAZ Property on Low-cycle Fatigue Behavior of Welded Joint[J]. International Journal of Fatigue, 2022, 156:106683.
[9]WOLF M, KAKISAWA H, SU F, et al. Determining Interface Fracture Toughness in Multi Layered Environmental Barrier Coatings with Laser Textured Silicon Bond Coat[J]. Coatings, 2021, 11(1):55.
[10]RICHARD H, LINNIG W, HENN K. Fatigue Crack Propagation under Combined Loading[J]. Forensic Engineering, 1991, 3(2/3):99-109.
[11]SHAKERI I, SHAHANI A R, RANS C D. Fatigue Crack Growth of Butt Welded Joints Subjected to Mixed Mode Loading and Overloading[J]. Engineering Fracture Mechanics, 2021, 241:107376.
[12]DOWLING N E, BEGLEY J A. Fatigue Crack Growth during Gross Plasticity and the J-Integral[J]. ASTM STP, 1976:137664896.
[13]ZHANG Zhenjie, LIU Ran, ZHANG Kaining, et al. JK-Integral Applied to Mixed-mode Fatigue Crack Propagation and Life Prediction in Metal Welding Interface[J]. International Journal of Solids and Structures, 2023, 268:112184.
[14]SONSINO C M. Effect of Residual Stresses on the Fatigue Behaviour of Welded Joints Depending on Loading Conditions and Weld Geometry[J]. International Journal of Fatigue, 2009, 31(1):88-101.
[15]PENNEC F, TIKRI B, BERGAMO S, et al. Experimental and Numerical Investigation of the Overload Effect on Fatigue Behaviour of Spot-welded Steel Sheets[J]. Matériaux & Techniques, 2018, 106(3):309.
[16]ZHANG Chunguo, HU Xiaozhi, LU Pengmin, et al. Tensile Overload-induced Plastic Deformation and Fatigue Behavior in Weld-repaired High-strength Low-alloy Steel[J]. Journal of Materials Processing Technology, 2013, 213(11):2005-2014.
[17]AGERSKOV H. Fatigue in Steel Structures under Random Loading[J]. Journal of Constructional Steel Research, 2000, 53(3):283-305.
[18]SHAHANI A R, SHAKERI I, RANS C. Two Engineering Models for Predicting the Retardation of Fatigue Crack Growth Caused by Mixed Mode Overload[J]. International Journal of Fatigue, 2020, 132:105378.
[19]LEE H, CHOI J. Overload Analysis and Fatigue Life Prediction of Spot-welded Specimens Using an Effective J-Integral[J]. Mechanics of materials, 2005, 37(1):19-32.
[20]李志强, 于洋, 刘艳, 等. 管路焊接结构的随机振动疲劳损伤分析[J]. 航天器环境工程, 2022, 39(2):125-132.
LI Zhiqiang, YU Yang, LIU Yan, et al. Analysis of Fatigue Damage of Welded Pipe Structure under Random Vibration[J]. Spacecraft Environment Engineering, 2022, 39(2):125-132.
[21]沈民民, 史锐, 郭鹏飞, 等. 重复使用飞行器分布式连接结构振动及疲劳研究[J]. 中国机械工程, 2024, 35(1):45-55.
Shen Minmin, SHI Rui, GUO Pengfei, et al. Study on Vibration and Fatigue of Distributed Connection Structures of Reusable Aircrafts[J]. China Mechanical Engineering, 2024, 35(1):45-55.
[22]聂春戈, 胡澎浩, 安佰坤, 等. 基于主S-N曲线方法的冷却单元支架随机振动疲劳分析[J]. 铁道车辆, 2023, 61(2):48-53.
NIE Chunge, HU Penghao, AN Baikun, et al. Fatigue Analysis of Random Vibration of Cooling Unit Bracket Based on Master S-N Curve Method[J]. Railway Vehicles, 2023, 61(2):48-53.
[23]申政, 方吉, 汤黎明, 等. 基于频域结构应力法的牵引电机结构振动疲劳分析[J]. 铁道科学与工程学报, 2022, 19(3):814-821.
SHEN Zheng, FANG Ji, TANG Liming, et al. Vibration Fatigue Analysis of Traction Motor Structure Based on Frequency Domain Structural Stress Method[J]. Journal of Railway Science and Engineering, 2022, 19(3):814-821.
[24]周晓坤, 裴宪军, 董平沙, 等.焊接结构随机振动疲劳分析方法研究与应用[J].计算机集成制造系统,2023,30(2):643-656.
ZHOU Xiaokun, PEI Xianjun, DONG Pingsha, et al. Research and Application of Random Vibration Fatigue Analysis Method for Welded Structures[J]. Computer Integrated Manufacturing Systems, 2023,30(2):643-656.
[25]BRAUN M, MILAKVIC A, RENKEN F, et al. Application of Local Approaches to the Assessment of Fatigue Test results obtained for Welded Joints at Sub-zero Temperatures[J]. International Journal of Fatigue,2020, 138:105672.
[26]TOMITA Y, IWAMOTO T. Computational Prediction of Deformation Behavior of TRIP Steels under Cyclic Loading[J]. International Journal of Mechanical Sciences, 2001, 43(9):2017-2034.
[27]NAGODE M, ZINGSHEIM F. An Online Algorithm for Temperature Influenced Fatigue-life Estimation:Strain-life Approach[J]. International Journal of Fatigue, 2004, 26(2):155-161.
[28]杨柳青, 胡明, 赵德明, 等. CRH5动车组车轮低温概率疲劳寿命研究[J]. 中国机械工程, 2018, 29(9):1115-1119.
YANG Liuqing, HU Ming, ZHAO Deming, et al. Research on Probabilistic Fatigue Lifes of CRH5 EMU Wheels at Low Temperature[J]. China Mechanical Engineering, 2018, 29(9):1115-1119.
[29]ZHOU Dewen, WANG Xiaowei, ZHANG Chunnan, et al. An Insight into the Creep-fatigue Damage Localization in Welded Joints Based on Crystal Plasticity Finite Element Method[J]. International Journal of Fatigue, 2023, 175:107802.
[30]崔海涛, 钱春华. 镍基高温合金的热机械疲劳寿命预测模型研究[J]. 中国机械工程,2024,35(1):67-73.
CUI Haitao, QIAN Chunhua. Research on Thermo-mechanical Fatigue Life Prediction Model of Nickel-based Superalloy[J]. China Mechanical Engineering. 2024,35(1):67-73.
[31]宋宇轩, 余婷, 秦富饶, 等. P92钢及其焊接接头的蠕变-疲劳寿命预测[J]. 压力容器, 2021, 38(11):26-35.
SONG Yuxuan, YU Ting, QIN Furao, et al. Creep Fatigue Life Prediction of P92 Steel and Its Welded Joints[J]. Pressure Vessels, 2021, 38(11):26-35.
[32]刘德胜. GH3536合金电子束焊接头高温疲劳—蠕变交互作用研究[D]. 长沙:湖南大学, 2021.
LIU Desheng. Study on High Temperature Fatigue-creep Interaction of Electron Beam Welded Joint of GH3536 Alloy[D]. Changsha:Hunan University, 2021.
[33]郑战光, 覃里杜, 谢昌吉, 等. 晶体塑性疲劳指示因子研究方法综述[J]. 机械工程学报, 2022, 58(8):105-116.
ZHENG Zhanguang, TAN Lidu, XIE Changji, et al. Review of Research Methods for Indicator Factors of Plastic Fatigue of Crystals[J]. Journal of Mechanical Engineering, 2022, 58(8):105-116.
[34]LI Kaishang, WANG Runzi, XU Le, et al. Life Prediction and Damage Analysis of Creep-fatigue Combined with High-low Cycle Loading by Using a Crystal Plasticity-based Approach[J]. International Journal of Fatigue, 2022, 164:107154.
[35]LU Pin, JIN Xiaochao, LI Pan, et al. Crystal Plasticity Constitutive Model and Thermodynamics Informed Creep-fatigue Life Prediction Model for Ni-based Single Crystal Superalloy[J]. International Journal of Fatigue, 2023, 176:107829.
[36]刘小刚, 李张辉, 于盛吉, 等. GH4169电子束焊接头高温疲劳寿命预测模型[J/OL]. 航空动力学报[2024-03-28]. https:∥doi.org/10.13224/ j.cnki.jasp. 20220418.
LIU Xiaogang, LI Zhanghui, YU Shengji, et al. High Temperature Fatigue Life Prediction Model for GH4169 Electron Beam Welding Joint[J/OL]. Journal of Aerodynamics[2024-03-28]. https:∥doi.org/10.13224/ j.cnki.jasp. 20220418.
[37]李承昆, 董志波, 王瀚,等. 密排阵列孔柱层板冷却结构服役寿命预测分析[J]. 焊接学报, 2022, 43(11):101-106.
LI Chengkun, DONG Zhibo, WANG Han, et al. Service Life Prediction of Laminated Cooling Structures with Close-packed Array Perforated Columns[J]. Transactions of the Chinese Welding Society, 2022, 43(11):101-106.
[38]董志波, 李承昆, 王程程,等. 残余应力对GH3230层板焊缝热疲劳寿命影响规律研究[J/OL]. 中国机械工程[2024-03-28].http:∥link.cnki.net/urlid/42.1294.th.2024-03-01.1046.018.
DONG Zhibo, LI Chengkun, WANG Chengcheng, et al. Research on the Influence of Residual Stress on the Thermal Fatigue Life of GH3230 Laminate Welds[J/OL]. China Mechanical Engineering[2024-03-28].http:∥link.cnki.net/urlid/42.1294.th.2024-03-01.1046.018.
[39]GUO Shen, ZHANG Wei,YIN Peng, et al. Cyclic Welded Joints under Thermomechanical Fatigue Loadings[J]. International Journal of Fatigue, 2021, 147:106183.
[40]YADAV V K, GAUR V, SINGH I V. Corrosion-fatigue Behavior of Welded Aluminum Alloy 2024-T3[J]. International Journal of Fatigue, 2023, 173:107675.
[41]JIN J J, LU W, FU Z, et al. Corrosion Fatigue Crack Growth in A7N01S-T5 Aluminum Alloy MIG Welded Joints[J]. Journal of Materials Research and Technology, 2023, 23:2202-2218.
[42]RYAN H, MEHMANPARAST A. Development of a New Approach for Corrosion-fatigue Analysis of Offshore Steel Structures[J]. Mechanics of Materials, 2023, 176:104526.
[43]XU Qian, SHAO Fei, BAI Linyue, et al. Corrosion Fatigue Crack Growth Mechanisms in Welded Joints of Marine Steel Structures[J]. Journal of Central South University, 2021, 28(1):58-71.
[44]韩忠英, 黄小光, 王黎明. 基于损伤演化律的腐蚀疲劳寿命预测方法及应用[J]. 西北工业大学学报, 2017, 35(2):333-338.
HAN Zhongying, HUANG Xiaoguang, WANG Liming. Corrosion Fatigue Life Prediction Method Based on Damage Evolution Law and Its Application[J]. Journal of Northwestern Polytechnical University, 2017, 35(2):333-338.
[45]谭娜, 孙世磊, 华磊. 腐蚀疲劳交替下2A12-T4航空铝合金的寿命分析研究[J]. 机械设计与制造, 2024(1):107-112.
TAN Na, SUN Shilei, HUA Lei. Life Analysis of 2A12-T4 Aviation Aluminum Alloy under Corrosion Fatigue Alternation[J]. Mechanical Design and Manufacture, 2024(1):107-112.
[46]LIAO Xiaoxuan, QIANG Bin, WU Jun, et al. An Improved Life Prediction Model of Corrosion Fatigue for T-Welded Joint[J]. International Journal of Fatigue, 2021, 152:106438.
[47]FENG Chao, SU Molin, XU Lianyong, et al.A Novel Generalization Ability-enhanced Approach for Corrosion Fatigue Life Prediction of Marine Welded Structures[J]. International Journal of Fatigue, 2023, 166:107222.
|