[1]NTI I K, ADEKOYA A F, WEYORI B A, et al. Applications of Artificial Intelligence in Engineering and Manufacturing:a Systematic Review[J]. Journal of Intelligent Manufacturing, 2022,33:1581-1601.
[2]ZHOU Ji, LI Peigen, ZHOU Yanhong, et al. Toward New-generation Intelligent Manufacturing[J]. Engineering, 2018, 4(1):11-20.
[3]SHAO Haidong, XIA Min, HAN Guangjie, et al. Intelligent Fault Diagnosis of Rotor-Bearing System under Varying Working Conditions with Modified Transfer Convolutional Neural Network and Thermal Images[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5):3488-3496.
[4]BENKEDJOUH T, ZERHOUNI N, RECHAK S. Tool Wear Condition Monitoring Based on Continuous Wavelet Transform and Blind Source Separation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(9):3311-3323.
[5]LUO Bo, WANG Haoting, LIU Hongqi, et al. Early Fault Detection of Machine Tools Based on Deep Learning and Dynamic Identification[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1):509-518.
[6]REHORN A G, JIANG J, ORBAN P E. State-of-the-art Methods and Results in Tool Condition Monitoring:a Review[J]. The International Journal of Advanced Manufacturing Technology, 2005, 26(7):693-710.
[7]ELANGOVAN M, DEVASENAPATI S B, SAKTHIVEL N R, et al. Evaluation of Expert System for Condition Monitoring of a Single Point Cutting Tool Using Principle Component Analysis and Decision Tree Algorithm[J]. Expert Systems with Applications, 2011, 38(4):4450-4459.
[8]SHAO Zhanshuai, HUANG Min, YAN Le. Using EMD to Extract Characteristic Values of The Tool Vibration Signals[C]∥2014 Sixth International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie, 2014:799-802.
[9]LIN Xiankun, ZHOU Bo, ZHU Lin. Sequential Spindle Current-based Tool Condition Monitoring with Support Vector Classifier for Milling Process[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9):3319-3328.
[10]ALEXANDRE F A, LOPES W N, LOFRANO DOTTO F R, et al.Tool Condition Monitoring of Aluminum Oxide Grinding Wheel Using AE and Fuzzy Model[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1):67-79.
[11]KLAIC M, MURAT Z, STAROVESKI T, et al. Tool Wear Monitoring in Rock Drilling Applications Using Vibration Signals[J]. Wear, 2018, 408:222-227.
[12]KOTHURU A, NOOKA S P, LIU R. Application of Audible Sound Signals for Tool Wear Monitoring Using Machine Learning Techniques in End Milling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9):3797-3808.
[13]MARTINEZ-ARELLANO G, TERRAZAS G, RATCHEV S. Tool Wear Classification Using Time Series Imaging and Deep Learning[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(9):3647-3662.
[14]LI Yingguang, LIU Changqing, HUA Jiaqi, et al. A Novel Method for Accurately Monitoring and Predicting Tool Wear under Varying Cutting Conditions Based on Meta-learning[J]. CIRP Annals, 2019, 68(1):487-490.
[15]HOANG D T, KANG H J. A Motor Current Signal-based Bearing Fault Diagnosis Using Deep Learning and Information Fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(6):3325-3333.
[16]OU Jiayu, LI Hongkun, HUANG Gangjin, et al. Tool Wear Recognition Based on Deep Kernel Autoencoder with Multichannel Signals Fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70:1-9.
[17]LI Dongyang, YUAN Dongfeng, LIANG Daojun, et al. Tool Fault Diagnosis Based on Improved Multiscale Network and Feature Fusion[C]∥2021 IEEE International Conference on Prognostics and Health Management. Detroit, 2021:1-6.
[18]刘会永, 张松, 李剑峰, 等. 采用改进CNN-BiLSTM模型的刀具磨损状态监测[J/OL]. 中国机械工程.[2022-04-04] http:∥qikan.cmes.org/zgjxgc/CN/10.3969/j.issn.1004-132X.2022.16.007.
LIU Huiyong, ZHANG Song, LI Jianfeng, et al. Tool Wear Detection Based on Improved CNN-BiLSTM Model[J/OL]. China Mechanical Engineering.[2022-04-04].http:∥qikan.cmes.org/zgjxgc/CN/10.3969/j.issn.1004-132X.2022.16.007.
[19]ZHOU Chaowen, JIN Jing, CHEN Chi. Research on Tool Wear Monitoring Based on GRU-CNN[C]∥2021 6th International Conference on Intelligent Computing and Signal Processing. Xian, 2021:729-733.
[20]MA Meng, MAO Zhu. Deep-convolution-based LSTM Network for Remaining Useful Life Prediction[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3):1658-1667.
[21]彭超, 唐向红, 陆见光. 基于边缘计算的轴承故障诊断[J]. 组合机床与自动化加工技术, 2020(12):52-55.
PENG Chao, TANG Xianghong, LU Jianguang. Bearing Fault Diagnosis Based on Edge Computing[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(12):52-55.
[22]QIAN Gang, PAN Donghui, TANG Huasong, et al. Edge Computing:a Promising Framework for Real-time Fault Diagnosis and Dynamic Control of Rotating Machines Using Multi-sensor Data[J]. IEEE Sensors Journal, 2019, 19(11):4211-4220.
[23]LI Huifang, HU Guangzheng, LI Jianqiang, et al. Intelligent Fault Diagnosis for Large-scale Rotating Machines Using Binarized Deep Neural Networks and Random Forests[J]. IEEE Transactions on Automation Science and Engineering, 2021, 19(2):1109-1119.
|