[1]BEN E, GERSHON E. Automatic Generation of Globally Assured Collision Free Orientations for 5-Axis Ball-end Tool-paths[J]. Computer-Aided Design, 2018,102:171-181.
[2]KlAUS D, PAUL B, TOMAS G, et al. A Machine Learning-enhanced Digital Twin Approach for Human-Robot-collaboration[J]. Procedia CIRP, 2018,76:187-192.
[3]AHMAD R, TICHADOU S, HASCOET Y J. Generation of Safe and Intelligent Tool-paths for Multi-axis Machine-tools in a Dynamic 2D Virtual Environment[J]. International Journal of Computer Integrated Manufacturing, 2016,29(9):982-995.
[4]CHANG Cecheng, LIN Weiming, LAI Chuanan. Using Real-time Dynamic Prediction to Implement IoV-based Collision Avoidance[J]. Applied Sciences,2019,9(24):5370-5381.
[5]FRISTON S, STEED A. Real-time Collision Detection for Deformable Characters with Radial Fields[J]. IEEE Transactions on Visualization and Computer Graphics,2019,25(8):2611-2622.
[6]LI Te, WANG Yongqing, LIU Kuo, et al. Virtual Grid and BPNN Based Collision Avoidance Control of Automatic Fixture System[J]. The International Journal of Advanced Manufacturing Technology, 2018,95(5):2843-2853.
[7]CHANG W Y, HSU B Y , HSU J W. Real-time Collision Avoidance for Five-axis CNC Machine Tool Based on Cyber-physical System[C]∥2018 IEEE International Conference on Advanced Manufacturing (ICAM). Yunlin, 2018:284-287.
[8]ZHEN Sang, TAI Yongwang, XIANG Xiangzou, et al. Research on Online Collision Detection Algorithm of CNC Machine Tools[J]. Key Engineering Materials, 2016,693:1780-1785.
[9]成居宝,杜娟,刘丽琴,等.基于数控机床特性的碰撞检测算法研究[J].组合机床与自动化加工技术, 2020(8):101-105.
CHENG Jubao, DU Juan, LIU Liqin, et al. Research on Collision Detection Algorithm Based on Characteristics of CNC Machine Tools[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(8):101-105.
[10]王帅,郭锐锋,王鸿亮,等.五轴加工复杂曲面的隐函数碰撞检测方法[J].小型微型计算机系统,2017,38(9):2171-2176.
WANG Shuai, GUO Ruifeng, WANG Hongliang, et al. Collision Detection Method of Implicit Function for Complex Surfaces in Five-axis Machining[J]. Journal of Chinese Computer Systems, 2017,38(9):2171-2176.
[11]WANG J, LUO M, ZHANG D. A GPU-accelerated Approach for Collision Detection and Tool Posture Modification in Multi-axis Machining[J]. IEEE Access, 2018, 6:35132-35142.
[12]陶飞,刘蔚然,张萌,等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统, 2019,25(1):1-18.
TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension Digital Twin Model and Its Ten Applications[J]. Computer Integrated Manufacturing Systems, 2019,25(1):1-18.
[13]陶飞,刘蔚然,刘检华,等.数字孪生及其应用探索[J].计算机集成制造系统, 2018,24(1):1-18.
TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital Twin and Its Potential Application Exploration[J]. Computer Integrated Manufacturing Systems, 2018,24(1):1-18.
[14]TAO F, ZHANG H, LIU A, et al. Digital Twin in Industry:State-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4):2405-2415.
[15]李欣,刘秀,万欣欣.数字孪生应用及安全发展综述[J].系统仿真学报, 2019,31(3):385-392.
LI Xin, LIU Xiu, WAN Xinxin. Overview of Digital Twins Application and Safe Development[J]. Journal of System Simulation, 2019,31(3):385-392.
[16]ZHENG Yu, YANG Sen, CHENG Huanchong. An Application Framework of Digital Twin and Its Case Study[J].Journal of Ambient Intelligent and Humanized Computing, 2019, 10(3):1141-1153.
[17]ZHANG Lin, ZHOU Longfei, HORN B K P. Building a Right Digital Twin with Model Engineering[J]. Journal of Manufacturing Systems,2021,59:151-164.
[18]LU Yuqian, LIU Chao, KEVIN I W, et al. Digital Twin-driven Smart Manufacturing:Connotation, Reference Model, Applications and Research Issues[J]. Robotics and Computer-Integrated Manufacturing, 2020,61:101837.
[19]郭具涛,洪海波,钟珂珂,等.基于数字孪生的航天制造车间生产管控方法[J].中国机械工程,2020,31(7):808-814.
GUO Jutao, HONG Haibo, ZHONG Keke, et al. Production Management and Control Method of Aerospace Manufacturing Workshops Based on Digital Twin[J]. China Mechanical Engineering, 2020,31(7):808-814.
[20]FANG Y, PENG C, LOU P, et al. Digital-twin-based Job Shop Scheduling toward Smart Manufacturing[J]. IEEE Transactions on Industrial Informatics, 2019, 15(12):6425-6435.
[21]舒亮,张洁,杨艳芳,等.考虑节拍约束的断路器孪生车间模型动力学控制[J].系统仿真学报, 2021,33(6):1277-1287.
SHU Liang, ZHANG Jie, YANG Yanfang, et al. Dynamic Control of Twin-workshop Model of Circuit Breaker Considering Takt Time Constraints[J]. Journal of System Simulation, 2021,33(6):1277-1287.
[22]孙惠斌,颜建兴,魏小红,等.数字孪生驱动的航空发动机装配技术[J].中国机械工程,2020,31(7):833-841.
SUN Huibin, YAN Jianxing, WEI Xiaohong, et al. Digital Twin-driven Aero-engine Assembly Technology[J]. China Mechanical Engineering, 2020,31(7):833-841.
[23]孙学民,刘世民,申兴旺,等. 数字孪生驱动的高精密产品智能化装配方法[J].计算机集成制造系统, 2022, 28(6):1704-1715.
SUN Xuemin, LIU Shimin, SHEN Xingwang,et al. Digital Twin-driven Intelligent Assembly Method for High Precision Products[J]. Computer Integrated Manu facturing Systems, 2022, 28(6):1704-1715.
[24]WANG Wenbo, ZHANG Yingfeng, RAY Y. et al. A Proactive Material Handling Method for CPS Enabled Shop-floor[J]. Robotics and Computer-Integrated Manufacturing, 2020,61:101849.
[25]骆伟超. 基于Digital Twin的数控机床预测性维护关键技术研究[D].济南:山东大学,2020.
LUO Weichao. Research on the Key Technology of Machine Tool Predictive Maintenance Based on Digital Twin[D]. Jinan:Shandong University, 2020.
[26]LUO Weichao, HU Tianliang, YE Yingxin, et al. A Hybrid Predictive Maintenance Approach for CNC Machine Tool Driven by Digital Twin[J]. Robotics and Computer-Integrated Manufacturing, 2020,65:101974-101974.
[27]LUO Weichao, HU Tianliang, ZHANG Chengrui, et al. Digital Twin for CNC Machine Tool:Modeling and Using Strategy [J]. Journal of Ambient Intelligence and Humanized Computing, 2019,10(3):1129-1140.
[28]巩超光,胡天亮,叶瑛歆.基于数字孪生的铣削参数动态多目标优化策略[J].计算机集成制造系统,2021,27(2):478-486.
GONG Chaoguang, HU Tianliang, YE Yingxin. Dynamic Multi-objective Optimization Strategy of Milling Parameters Based on Digital Twin[J]. Computer Integrated Manufacturing Systems, 2021,27(2):478-486.
|