[1]李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(Z1):280-282.
LI Yi, ZHAO Yongqing, ZENG Weidong. Application and Development of Aerial Titanium Alloys[J]. Materials Review, 2020, 34(Z1):280-282.
[2]宋德军, 牛龙, 杨胜利. 船舶海水管路钛合金应用技术研究[J]. 稀有金属材料与工程, 2020, 49(3):1100-1104.
SONG Dejun, NIU Long, YANG Shengli. Research on Application Technology of Titanium Alloy in Marine Pipeline[J]. Rare Metal Materials and Engineering, 2020, 49(3):1100-1104.
[3]徐九华. 钛合金切削磨削加工技术研究进展[J]. 金刚石与磨料磨具工程, 2020, 40(5):1-4.
XU Jiuhua. Research Progress of Cutting or Grinding Technology for Titanium Alloy[J]. Diamond & Abrasives Engineering, 2020, 40(5):1-4.
[4]HOURMAND M, SARHAN A A D, SAYUTI M, et al. A Comprehensive Review on Machining of Titanium Alloys[J]. Arabian Journal for Science and Engineering, 2021, 46(8):1-37.
[5]ABDELRAZEK A H, CHOUDHURY I A, NUKMAN Y, et al. Metal Cutting Lubricants and Cutting Tools:a Review on the Performance Improvement and Sustainability Assessment[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9):4221-4245.
[6]刘文辉, 杨迅雷, 张平, 等. 7055铝合金高速铣削表面粗糙度预测模型研究[J]. 兵器材料科学与工程, 2015, 38(6):1-4.
LIU Wenhui, YANG Xunlei, ZHANG Ping, et al. Prediction Model of Surface Roughness of 7055 Aluminum Alloy after High Speed Cutting[J]. Ordnance Material Science and Engineering, 2015, 38(6):1-4.
[7]YANG Shucai, HE Chunsheng, ZHENG Minli. A Prediction Model for Titanium Alloy Surface Roughness When Milling with Micro-textured Ball-end Cutters at Different Workpiece Inclination Angles[J]. London:Springer, 2019, 100(5):2115-2122.
[8]刘维伟, 李锋, 任军学, 等. 基于标准粒子群算法的GH4169高速铣削表面粗糙度研究[J]. 中国机械工程, 2011, 22(22):2654-2657.
LIU Weiwei, LI Feng, REN Junxue, et al. Research on Surface Roughness Based on SPSO in High Milling of GH4169[J]. China Mechanical Engineering, 2011, 22(22):2654-2657.
[9]NATARAJAN C, MUTHU S, KARUPPUSWAMY P. Prediction and Analysis of Surface Roughness Characteristics of a Non-ferrous Material Using ANN in CNC Turning[J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(9/12):1043-1051.
[10]庞桂兵, 李殿明, 张利萍, 等. 基于神经网络的电化学加工表面粗糙度预测与加工参数正交优化[J]. 中国机械工程, 2013, 24(9):1191-1194.
PANG Guibing, LI Dianming, ZHANG Liping, et al. Surface Roughness Prediction of Electrochemical Machining and Orthogonal Optimization of Processing Parameters Based on Neural Networks[J]. China Mechanical Engineering, 2013, 24(9):1191-1194.
[11]胡敬文. 基于BP神经网络的表面偏斜度和峰度预测建模[J]. 表面技术, 2017, 46(2):235-239.
HU Jingwen. Predictive Modeling of Surface Skewness and Kurtosis Based on BP Neural Network[J]. Surface Technology, 2017, 46(2):235-239.
[12]ASILTRK I·. Predicting Surface Roughness of Hardened AISI 1040 Based on Cutting Parameters Using Neural Networks and Multiple Regression[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63(1/4):249-257.
[13]LIN Y C, WU K D, SHIH W C, et al. Prediction of Surface Roughness Based on Cutting Parameters and Machining Vibration in End Milling Using Regression Method and Artificial Neural Network[J]. Applied Sciences, 2020, 10(11):39-41.
[14]BANDAPALLI C, SUTARIA B M, BHATT D V, et al. Experimental Investigation and Estimation of Surface Roughness Using ANN, GMDH & MRA Models in High Speed Micro End Milling of Titanium Alloy (Grade-5)[J]. Materials Today:Proceedings,2017, 4(2):1019-1028.
|