中国机械工程 ›› 2021, Vol. 32 ›› Issue (23): 2774-2784,2931.DOI: 10.3969/j.issn.1004-132X.2021.23.001
单忠德1;刘阳2;范聪泽1;汪俊1
出版日期:
2021-12-10
发布日期:
2021-12-23
作者简介:
单忠德,男,1970年生,研究员、博士研究生导师,中国工程院院士。研究方向为数字化机械装备与先进成形技术。E-mail:shanzd@nuaa.edu.cn。
基金资助:
SHAN Zhongde1;LIU Yang2;FAN Congze1;WANG Jun1
Online:
2021-12-10
Published:
2021-12-23
摘要: 从制造工艺和装备研制的角度总结了复合材料预制体成形技术发展历程,分析了复合材料预制体成形制造工艺的技术特点,列举了国内外复合材料预制体成形制造典型的工艺与装备现状以及存在的问题及差距,并分析展望了复合材料预制体成形技术的未来发展方向及趋势。发展高性能复合材料构件数字化精确成形制造技术及装备,能更好推动我国复合材料技术进步,并实现更加广泛的推广应用。
中图分类号:
单忠德, 刘阳, 范聪泽, 汪俊. 复合材料预制体成形制造工艺与装备研究[J]. 中国机械工程, 2021, 32(23): 2774-2784,2931.
SHAN Zhongde, LIU Yang, FAN Congze, WANG Jun. Research on Forming Manufacturing Technology and Equipment of Composite Preforms[J]. China Mechanical Engineering, 2021, 32(23): 2774-2784,2931.
[1]杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU Shanyi. Advanced Composite Materials and Aerospace Engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12. [2]单忠德, 刘丰. 复合材料预制体数字化三维织造成形[M]. 北京:机械工业出版社, 2019:1-17. SHAN Zhongde, LIU Feng. Digital 3D Weaving of Composite Preform[M]. Beijing:China Machine Press, 2019:1-17. [3]马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322. MA Limin, ZHANG Jiazhen, YUE Guangquan, et al. Application of Composites in New Generation of Large Civil Aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2):317-322. [4]单忠德, 战丽, 缪云良, 等. 复合材料构件数字化精确成形技术与装备[J]. 科技导报, 2020, 38(14):63-67. SHAN Zhongde, ZHAN Li, MIAO Yunliang, et al. Digital Precision Forming Technology and Equipment for Composite Materials[J]. Science & Technology Review, 2020, 38(14):63-67. [5]IVANOV D S, LOMOV S V. Modelling the Structure and Behaviour of 2D and 3D Woven Composites Used in Aerospace Applications[M]∥ IRVING P E, SOUTIS C. Polymer Composites in the Aerospace Industry. Cambridge:Woodhead Publishing, 2015:21-52. [6]单忠德, 范聪泽, 孙启利, 等. 纤维增强树脂基复合材料增材制造技术与装备研究[J]. 中国机械工程, 2020, 31(2):221-226. SHAN Zhongde, FAN Congze, SUN Qili, et al. Research on Additive Manufacturing Technology and Equipment for Fiber Reinforced Resin Composites[J]. China Mechanical Engineering, 2020, 31(2):221-226. [7]SUN Z, SHAN Z, SHAO T. A Comparative Study for the Thermal Conductivities of C/SiC Composites with Different Preform Architectures Fabricating by Flexible Oriented Woven Process[J]. International Journal of Heat and Mass Transfer, 2021, 170:120973. [8]SUN Z, SHAN Z, SHAO T, et al. A Multiscale Modeling for Predicting the Thermal Expansion Behaviors of 3D C/SiC Composites Considering Porosity and Fiber Volume Fraction[J]. Ceramics International, 2021, 47(6):7925-7936. [9]KHATKAR V, BEHERA B K, MANJUNATH R N. Textile Structural Composites for Automotive Leaf Spring Application[J]. Composites, Part B:Engineering, 2020, 182:107662. [10]汪星明, 邢誉峰. 三维编织复合材料研究进展[J]. 航空学报, 2010, 31(5):914-927. WANG Xingming, XING Yufeng. Developments in Research on 3D Braided Composites[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):914-927. [11]SHARMA R, RAVIKUMAR N L, DASGUPTA K, et al. Advanced Carbon-Carbon Composites:Processing Properties and Applications[M]∥ KAR K K. Composite Materials:Processing, Applications, Characterizations. Berlin:Springer Berlin Heidelberg, 2017:315-367. [12]KHOKAR N. 3D-Weaving:Theory and Practice[J]. The Journal of the Textile Institute, 2001, 92(2):193-207. [13]KYOSEV Y. Advances in Braiding Technology[M]. Cambridge:Woodhead Publishing, 2016:3-78. [14]王显峰, 高天成, 肖军. 复合材料缝合技术的研究进展[J]. 纺织学报, 2019, 40(12):169-177. WANG Xianfeng, GAO Tiancheng, XIAO Jun. Research Progress of Stitching Technology of Composite Materials[J]. Journal of Textile Research, 2019, 40(12):169-177. [15]SHAN Z, LIU F, DONG X, et al. Three-dimensional Weave-forming Method for Composites:US, 8600541[P]. 2013-12-03. [16]BEHERA B K, DASH B P. Mechanical Behavior of 3D Woven Composites[J]. Materials & Design, 2015, 67:261-271. [17]TAN P, TONG L, STEVEN G P, et al. Behavior of 3D Orthogonal Woven CFRP Composites. Part I. Experimental Investigation[J]. Composites, Part A:Applied Science and Manufacturing, 2000, 31(3):259-271. [18]CHEN X, TAYLOR L W, TSAI L J. An Overview on Fabrication of Three-dimensional Woven Textile Preforms for Composites[J]. Textile Research Journal, 2011, 81(9):932-944. [19]LIU Y, ZHU J, CHEN Z, et al. Mechanical Behavior of 2.5D(Shallow Bend-joint)and 3D Orthogonal Quartzf/Silica Composites by Silicasol-infiltration-sintering[J]. Materials Science and Engineering:A, 2012, 532:230-235. [20]MOURITZ A P, BANNISTER M K, FALZON P J, et al. Review of Applications for Advanced Three-dimensional Fibre Textile Composites[J]. Composites, Part A:Applied Science and Manufacturing, 1999, 30(12):1445-1461. [21]ANSAR M, WANG X, ZHOU C. Modeling Strategies of 3D Woven Composites:a Review[J]. Composite Structures, 2011, 93(8):1947-1963. [22]FUKUTA K, NAGATSUKA Y, TSUBURAYA S, et al. Three-dimensional Fabric, and Method and Loom Construction for the Production Thereof:US, 3834424[P]. 1974-09-10. [23]KHOKAR N, DOMEJI T. A Device for Producing Integrated Nonwoven Three Dimensional Fabric:SE, 509944[P]. 1998-01-29. [24]KHOKAR N, PETERSON E. An Experimental Uniaxial Noobing Device:Construction, Method of Operation, and Related Aspects[J]. Journal of the Textile Institute, 1999, 90(2):225-242. [25]WEINBERG A. Method of Shed Opening of Planar Warp for High Density Three Dimensional Weaving:US, 5449025[P]. 1995-09-12. [26]MOHAMED M H, ZHANG Z H. Method of Forming Variable Cross-sectional Shaped Three-dimensional Fabrics:US, 5085252[P]. 1992-02-04. [27]DEEMEY S. The New Generation of Carpet Weaving Machines Combines Flexibility and Productivity[M/OL]. [2021-10-11]. https:∥www. pdffiller. com/293907390-vdwkit02pdf-The-new-generation-of-carpet-weaving-machines-combines-2002. [28]Basalt. Today. Optima Develops the Next Generation Weaving Machines[EB/OL]. Moscow:Basalt. Today, 2019[2021-10-11]. https:∥basalt. today/2019/06/39389/. [29]POTLURI P, SHARIF T, JETAVAT D, et al. Bench-marking of 3D Preforming Strategies[C]∥17th International Conference on Composite Materials. Edinburgh, 2009:1-10. [30]Textile Excellence. Stubli To Display Two New Machines for Technical Textiles at Techtextil Germany[EB/OL]. Mumbai:Textile Excellence, 2017[2021-10-11]. https:∥www. textileexcellence. com/news/staubli-to-display-two-new-machines-for-technical-textiles-at-techtextil-germany/. [31]刘健, 黄故. 多剑杆织机三维织造研究[J]. 上海纺织科技, 2005, 33(2):8-10. LIU Jian, HUANG Gu. Research on the 3-D Weaving Technique on Multi-rapier Loom[J]. Shanghai Textile ence & Technology, 2005, 33(2):8-10. [32]杨建成. 碳纤维多层角联机织装备及技术[J]. 纺织机械, 2014(4):88-89. YANG Jiancheng. Carbon Fiber Multilayer Angle Interlock Weaving Equipment and Technology[J]. Textile Machinery, 2014(4):88-89. [33]POTLURI P. Braiding[M]∥ NICOLAIS L, LEE S M. Wiley Encyclopedia of Composites. New York:Wiley, 2012:138-152. [34]BILISKIK K. Three-dimensional Braiding for Composites:a Review[J]. Textile Research Journal, 2013, 83(13):1414-1436. [35]TOLOSANA N, LOMOV S V, MIRAVETE A. Development of a Geometrical Model for a 3D Braiding Unit Cell Based on Braiding Machine Emulation[C]∥ Finite Element Modelling of Textiles and Textile Composites. St-Petersburg, 2007:26-28. [36]BYUN J H, CHOU T W. Process-microstructure Relationships of 2-Step and 4-Step Braided Composites[J]. Composites Science and Technology, 1996, 56(3):235-251. [37]POTLURI P, RAWAL A, RIVALDI M, et al. Geometrical Modelling and Control of a Triaxial Braiding Machine for Producing 3D Preforms[J]. Composites, Part A:Applied Science and Manufacturing, 2003, 34(6):481-492. [38]BYUN J H, WHITNEY T J, DU G W, et al. Analytical Characterization of Two-step Braided Composites[J]. Journal of Composite Materials, 1991, 25(12):1599-1618. [39]SONTAG T, YANG H, GRIES T, et al. Recent Advances in 3D Braiding Technology[M]∥ CHEN X. Advances in 3D Textiles. Cambridge:Woodhead Publishing, 2015:153-181. [40]PAZMINO J, CARVELLI V, LOMOV S V, et al. Mechanical Properties of a 3D Braided Carbon/Epoxy Composite[C]∥ Proceedings of the 20th AIMETA Congress of Theoretical and Applied Mechanics. Bologna, 2011:LIRIAS1771110. [41]EMONTS C, GRIGAT N, MERKORD F, et al. Innovation in 3D Braiding Technology and Its Applications[J]. Textiles, 2021, 1(2):185-205. [42]SALTMARSH A. Thinking Big with a Large-scale Robotic Braider[EB/OL]. Paris:Direct Industry e-Magazine, 2019[2021-10-11]. https:∥emag. directindustry. com/thinking-big-with-a-large-scale-robotic-braider/. [43]陈利, 赵世博, 王心淼. 三维纺织增强材料及其在航空航天领域的应用[J]. 纺织导报, 2018(增刊1):82-89. CHEN Li, ZHAO Shibo, WANG Xinmiao. Development and Application of 3D Textile Reinforcements in the Aerospace Field[J]. China Textile Leader, 2018(S1):82-89. [44]李静. 三维编织机的研究现状与发展趋势[J]. 纺织科学研究, 2020(2):78-80 LI Jing. Research Status and Development Trend of 3D Braiding Machine[J]. Textile Science Research, 2020(2):78-80. [45]VELICKI A, THRASH P. Advanced Structural Concept Development Using Stitched Composites[C]∥49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Chicago, 2008:2329. [46]VELMURUGAN R, SOLAIMURUGAN S. Improvements in Mode I Interlaminar Fracture Toughness and In-plane Mechanical Properties of Stitched Glass/polyester Composites[J]. Composites Science and Technology, 2007, 67(1):61-69. [47]焦亚男, 李晓久, 董孚允. 三维缝合复合材料性能研究[J]. 纺织学报, 2002, 23(2):16-18. JIAO Yanan, LI Xiaojiu, DONG Fuyun. Investigation on 3D Stitched Composites Behavior[J]. Journal of Textile Research, 2002, 23(2):16-18. [48]WITTIG J. Recent Development in the Robotic Stitching Technology for Textile Structural Composites[C]∥ International SAMPE Technical Conference. Seattle, 2001:540-550. [49]PLAIN K P, TONG L. An Experimental Study on Mode Ⅰ and Ⅱ Fracture Toughness of Laminates Stitched with a One-sided Stitching Technique[J]. Composites, Part A:Applied Science and Manufacturing, 2011, 42(2):203-210. [50]BRANDT J, GESSLER A, FILSINGER J. New Approaches in Textile and Impregnation Technologies for the Cost Effective Manufacturing of CFRP Aerospace Components[C]∥ Proceedings of 23rd International Congress of Aeronautical Sciences(ICAS 2002). Toronto, 2002:1-9. [51]KARAL M. AST Composite Wing Program:Executive Summary, NASA/CR-2001-210650[R]. Hampton:NASA Langley Research Center, 2001. [52]SCHWINN T, KRIEG O D, MENGES A. Robotic Sewing:a Textile Approach towards the Computational Design and Fabrication of Lightweight Timber Shells[C]∥ ACADIA 2016. Ann Arbor, 2016:224-233. [53]KEILMANN R, CHEN Y. Basic 3D-robot Sewing Unit KL 500[EB/OL]. Lorsch, Germany, KSL Keilmann Sondermaschinenbau GmbH, 2016[2021-10-11]. http:∥www. ksl-lorsch. de/en/products/produktgruppen/robot-sewing-unit/basic-3d-robot-sewing-unit-kl-500/. [54]KORDI M T, MBAREK T, HSING M, et al. Systematical Development of a One-sided Sewing Machine for Robot-supported 3D-sewing by Automated Manufacture of Fibre Reinforced Composite Structures[R]. Aachen:RWTH Aachen University, 2007. [55]MBAREK T, KORDI M, HSING M, et al. Robot-supported One-sided Stitching Technique for Fibre Reinforced Composite Materials[C]∥ CIFMA01 IFCAM01, 1st International Francophone Congress for Advanced Mechanics. Aleppo, 2006:2-4. [56]胡培利, 单忠德, 刘云志, 等. 复合材料构件预制体压实致密工艺研究[J]. 机械工程学报, 2019, 55(9):191-197. HU Peili, SHAN Zhongde, LIU Yunzhi, et al. Compaction and Densification Process of Compo-site Component Preforms[J]. Journal of Mechanical Engineering, 2019, 55(9):191-197. [57]SHAN Z, LIU F, LI L, et al. Three-dimensional Weave-forming Equipment for Composites:US, 8655475[P]. 2014-02-18. [58]SUN Z, SHAN Z, SHAO T, et al. Numerical Analysis of Out-of-plane Thermal Conductivity of C/C Composites by Flexible Oriented 3D Weaving Process Considering Voids and Fiber Volume Fractions[J]. Journal of Materials Research, 2020, 35(14):1888-1897. [59]LI S, SHAN Z, DU D, et al. Digital Placement System of a Lateral Tensioning Rod during the Formation of Flexible-oriented Three-dimensional Composite Preforms[J]. Journal of Manufacturing Systems, 2021, 60:752-761. [60]KANG H, SHAN Z, YONG Z, et al. Progressive Damage Analysis and Strength Properties of Fiber-bar Composites Reinforced by Three-dimensional Weaving under Uniaxial Tension[J]. Composite Structures, 2016, 141:264-281. [61]刘云志, 单忠德, 战丽, 等. 柔性导向三维正交结构复合材料预制体建模研究[J]. 工程塑料应用, 2016, 44(6):63-66. LIU Yunzhi, SHAN Zhongde, ZHAN Li, et al. Research on Modeling of 3D Orthogonal Flexible Weavon Composite Preform[J]. Engineering Plastics Application, 2016, 44(6):63-66. |
[1] | 康仁科, 陆冰伟, 陈凯良, 李晟超, 戴晶滨, 董志刚鲍, 岩. 超声振动辅助磨削CFRP复合材料薄管撕裂损伤研究[J]. 中国机械工程, 2024, 35(03): 524-533,540. |
[2] | 张立峰, 王梓旭, 张旺通, 邓云飞, 隋翯, 郭志永. 单向陶瓷基复合材料C/SiC变角度顺逆磨的对比试验[J]. 中国机械工程, 2024, 35(02): 235-243. |
[3] | 朱福先, 仇刚, 朱兴民, 徐先宜, 周金宇. 碳玻混杂复合材料单钉单剪螺栓连接结构失效模式及渐进损伤分析[J]. 中国机械工程, 2023, 34(23): 2781-2793. |
[4] | 张立峰, 张晓光. 微量润滑变角度高速铣削碳纤维增强复合材料的加工性能与材料去除机理[J]. 中国机械工程, 2023, 34(21): 2622-2628. |
[5] | 杨亮, 蔡桂喜, 刘芳, 李建奎. 碳纤维复合材料制孔结构超声无损检测及评价[J]. 中国机械工程, 2023, 34(19): 2327-2332. |
[6] | 闫东东, 胡宇博, 郎利辉, 秦成伟, 张三敏, 李勇. 大跨距复合材料结构弯曲载荷监测及定位方法[J]. 中国机械工程, 2023, 34(18): 2257-2267. |
[7] | 王飞, 凤仪, 李新朝, 刘铸汉. Cu-Diamond复合材料的多次电弧烧蚀性能研究[J]. 中国机械工程, 2023, 34(13): 1599-1604. |
[8] | 彭翔, 江浩浩, 郭玉良, 李吉泉, 易兵, 姜少飞, . 机翼蒙皮铺层顺序和材料布局协同优化[J]. 中国机械工程, 2023, 34(12): 1415-1424,1435. |
[9] | 刘小峰, 张天瑀, 张春兵, 柏林. 基于交叉递归率的复材板损伤定位成像方法[J]. 中国机械工程, 2023, 34(08): 940-947. |
[10] | 王轩, 马瑞云, 周春苹. 挖补修理平纹编织面板蜂窝夹芯结构侧向压缩渐进失效机理[J]. 中国机械工程, 2023, 34(06): 727-738. |
[11] | 逄显娟, 岳世伟, 黄素玲, 谢金梦, 王帅, 宋晨飞, 岳赟, 刘建, 李栋. 碳纤维/聚醚醚酮(CF/PEEK)复合材料摩擦磨损性能及抗摩擦静电特性研究[J]. 中国机械工程, 2023, 34(03): 277-286. |
[12] | 郑志龙, 赵玉刚, 刘谦, 王珂, 周海安, 宋壮, 代迪, 张夏骏雨. 碳纤维增强复合材料水导激光加工实验研究[J]. 中国机械工程, 2023, 34(03): 344-351. |
[13] | 陶双全, 郝小忠, 杨子剑, 刘舒霆. CF/PEEK复合材料自阻电热原位膜混合加热固化方法[J]. 中国机械工程, 2022, 33(22): 2748-2754. |
[14] | 殷景飞, 徐九华, 丁文锋, 苏宏华, 曹洋, 何静远. SiCf/SiC陶瓷基复合材料单颗磨粒磨削试验研究[J]. 中国机械工程, 2022, 33(15): 1765-1771. |
[15] | 董琳, 杨冠军, 张小锋, 刘梅军, 周克崧, 李璞, 朱昌发, 徐向毅, 刘坤. 抗水氧腐蚀致密环境障涂层研究进展[J]. 中国机械工程, 2022, 33(12): 1459-1467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||