中国机械工程 ›› 2021, Vol. 32 ›› Issue (14): 1743-1756.DOI: 10.3969/j.issn.1004-132X.2021.14.013
张天理1,2;武雯1;于航1;林三宝2;栗卓新3
出版日期:
2021-07-25
发布日期:
2021-08-04
作者简介:
张天理,男,1985年生,副教授、博士。研究方向为焊接冶金及焊接性、焊接材料及工艺、高能束增材制造等。发表论文40余篇,出版专著6部,获得发明专利授权20项。E-mail:zhangtianli925@163.com。
基金资助:
ZHANG Tianli1,2;WU Wen1;YU Hang1;LIN Sanbao2;LI Zhuoxin3
Online:
2021-07-25
Published:
2021-08-04
摘要: 高强钢焊接过程中焊缝金属与母材的强韧匹配问题一直难以解决,因此急需细化合金元素调控体系,完善高强钢焊缝金属的强化增韧机理。贝氏体是高强钢焊缝金属中的重要组织,对其强韧性有重要影响,因此介绍了典型贝氏体的形成机理及分析方法,重点综述了合金元素对高强钢焊缝金属微观组织和力学性能的影响,得出高强钢焊接中各合金元素推荐值,进而丰富高强钢焊缝金属合金元素调控体系。
中图分类号:
张天理, 武雯, 于航, 林三宝, 栗卓新. 合金元素对高强钢焊缝金属贝氏体形成及力学性能影响的研究进展[J]. 中国机械工程, 2021, 32(14): 1743-1756.
ZHANG Tianli, WU Wen, YU Hang, LIN Sanbao, LI Zhuoxin. Research Progresses on Influences of Alloying Elements on Formation of Bainite and Mechanical Properties for High-strength Steel Weld Metals [J]. China Mechanical Engineering, 2021, 32(14): 1743-1756.
[1]COSTIN W L, LAVIGNE O, KOTOUSOV A. A Study on the Relationship between Microstructure and Mechanical Properties of Acicular Ferrite and Upper Bainite[J]. Materials Science and Engineering A, 2016, 663:193-203. [2]ABBASZADEH K, SAGHAFIAN H, KHEIRANDISH S. Effect of Bainite Morphology on Mechanical Properties of the Mixed Bainite-martensite Microstructure in D6AC Steel[J]. Journal of Materials Science and Technology, 2012, 28(4):336-342. [3]ZHAO J L, ZHAO X M, ZHAO X Y, et al. Effects of Nucleation Site and Morphology of Carbide Free-bainite on Microstructures and Properties of Bainite Martensite Multi-phase Steels[J]. Materials Science and Engineering A, 2019, 744:86-93. [4]BOHEMEN S M C V. Modeling Start Curves of Bainite Formation[J]. Metallurgical and Materials Transactions A, 2010, 41(2):285-296. [5]KEEHAN E, KARLSSON L, BHADESHIA H K D H, et al. Three-dimensional Analysis of Coalesced Bainite Using Focused Ion Beam Tomography[J]. Materials Characterization, 2008, 59(7):877-882. [6]LAMBERT-PERLADE A, GOURGUES A F. Austenite to Bainite Phase Transformation in the Heat-affected Zone of a High Strength Low Alloy Steel[J]. Acta Materialia, 2004, 52(8):2337-2348. [7]FAIRCHILD D, MACIA M, BANGARU N, et al. Welding Development for the Worlds Strongest Pipeline:X120[C]∥Proceedings of 7th International Conference on Trends in Welding Research. Harris:Callaway Gardens Resort, 2005:749-754. [8]ZAJAC S, SCHWINN V, TACKE K H. Characterization and Quantification of Complex Bainitic Microstructures in High and Ultra-high Strength Linepipe Steels[J]. Materials Science Forum, 2005, 500/501:387-394. [9]HUSAINI, ALI N, HAMZA J K, et al. Effects of Welding on the Change of Microstructure and Mechanical Properties of Low Carbon Steel[J]. IOP Conference Series:Materials Science and Engineering, 2019, 523:012065. [10]QIAO Z X, LIU Y C, YU L M, et al. Formation Mechanism of Granular Bainite in a 30CrNi3MoV Steel[J]. Journal of Alloys and Compounds, 2009, 475:560-564. [11]LU J, YU H, DUAN X N, et al. Investigation of Microstructural Evolution and Bainite Transformation Kinetics of Multi-phase Steel[J]. Materials Science and Engineering A, 2020, 774:1-28. [12]HUTER C, LIN M X, SCHICCHI D, et al. A Multiscale Perspective on the Kinetics of Solid State Transformations with Application to Bainite Formation[J]. AIMS Materials Science, 2015, 2(4):319-345. [13]DUSING M, MAHNKEN R. Simulation of Lower Bainitic Transformation with the Phase-field Method Considering Carbide Formation[J]. Computational Materials Science, 2016, 111:91-100. [14]DUSING M, MAHNKEN R. A Coupled Phase Field/Diffusion Model for Upper and Lower Bainitic Transformation[J]. International Journal of Solids and Structures, 2018, 135:172-183. [15]SUN D Y, LIU C B, LONG X Y, et al. Effect of Introduced Vanadium Carbide at the Bay Region on Bainite Transformation, Microstructure and Mechanical Properties of High-carbon and High-silicon Steel[J]. Materials Science and Engineering A, 2021, 811:138868. [16]SCHOOF E, KUBENDRAN A P G, SCHNEIDER D, et al. Influence of Stress-free Transformation Strain on the Autocatalytic Growth of Bainite:a Multiphase-field Analysis[J]. Materialia, 2020, 9:100620. [17]LAN L Y, KONG X W, QIU C L. Characterization of Coarse Bainite Transformation in Low Carbon Steel during Simulated Welding Thermal Cycles[J]. Materials Characterization, 2015, 105:95-103. [18]LAN L Y, YU M, QIU C L. On the Local Mechanical Properties of Isothermally Transformed Bainite in Low Carbon Steel[J]. Materials Science and Engineering A, 2019, 742:442-450. [19]WAN X L, WU K M, HUANG G, et al. In Situ Observations of the Formation of Fine-grained Mixed Microstructures of Acicular Ferrite and Bainite in the Simulated Coarse-grained Heated-affected Zone[J]. Steel Research, 2014, 85:243-250. [20]KEEHAN E, KARLSSON L, ANDREN H O, et al. Influence of Carbon, Manganese and Nickel on Microstructure and Properties of Strong Steel Weld Metals:Part 3—Increased Strength Resulting from Carbon Additions[J]. Science and Technology of Welding and Joining, 2006, 11:19-24. [21]齐彦昌, 彭云, 魏金山, 等. 碳对C-1.5Mn-2.5Ni-0.5Cr-0.5Mo高强钢焊缝金属组织和性能的影响[J]. 焊接学报, 2010, 31(11):41-45. QI Yanchang, PENG Yun, WEI Jinshan, et al. Effect of Carbon on Microstructure and Properties of C-1.5Mn-2.5Ni-0.5Cr-0.5Mo High Strength Steel Weld Metal[J]. Transactions of The China Welding Institution, 2010, 31(11):41-45. [22]CAO R, CHAN Z S, YUAN J J, et al. The Effects of Silicon and Copper on Microstructures, Tensile and Charpy Properties of Weld Metals by Refined X120 Wire[J]. Materials Science and Engineering A, 2018, 718:350-362. [23]张天理, 于航, 陈毓, 等. 一种适用于1000MPa超高强钢焊接的含复合稀土元素药芯焊丝:中国, 110480207[P]. 2021-03-16. ZHANG Tianli, YU Hang, CHEN Yu, et al. A Flux Cored Wire Containing Composite Rare Earth Elements Suitable for 1000MPa Ultra-high Strength Steel Welding:CN110480207[P]. 2021-03-16. [24]KEEHAN E, KARLSSON L, ANDREN H O, et al. New Developments with C-Mn-Ni in High-strength Steel Weld Metals:Part B Mechanical Properties[J]. Welding Journal, 2006, 10:218-224. [25]彭杏娜, 彭云, 田志凌, 等. Ni元素对Cr-Ni-Mo系高强焊缝组织演化的影响[J]. 焊接学报, 2014, 35(9):32-36. PENG Xinna, PENG Yun, TIAN Zhiling, et al. The Influence of Ni Element on the Microstructure Evolution of Cr-Ni-Mo High-strength Welds[J]. Transactions of the China Welding Institution, 2014, 35(9):32-36. [26]栗卓新, 温培根, 李国栋, 等. 一种X90/X100管线钢用高强度金属芯埋弧焊丝及其制备方法:中国, 104942475[P]. 2017-06-16. LI Zhuoxin, WEN Peigen, LI Guodong, et al. A High-strength Metal-cored Submerged Arc Welding Wire for X90/X100 Pipeline Steel and Its Preparation Method:CN104942475[P]. 2017-06-16. [27]SHIM D H, LEE T, LEE J, et al. Increased Resistance to Hydrogen Embrittlement in High-strength Steels Composed of Granular Bainite[J]. Materials Science and Engineering A, 2017, 700:473-480. [28]ZHANG T L, LI Z X, MA S M,et al. High Strength Steel(600~900 MPa) Deposited Metals:Microstructure and Mechanical Properties[J]. Science and Technology of Welding and Joining, 2016, 21:186-193. [29]张天理. 800 MPa级高强钢金属粉芯焊丝熔敷金属复相分割微观组织及强韧化研究[D]. 天津:天津大学, 2016. ZHANG Tianli. Study on Interlaced Multiphase Microstructure and Strengthening and Toughening Mechanism of Deposited Metals of Metal Powder-cored Wires for 800 MPa Grade High Strength Steels[D]. Tianjin:Tianjin University, 2016. [30]ZHANG T L, LI Z X, YOUNG F, et al. Global Progress on Welding Consumables for HSLA Steel[J]. ISIJ International, 2014, 54(7):1472-1484. [31]朱官朋, 郭纯, 孔红雨. 药芯焊丝Cr含量对低合金钢焊缝金属性能的影响[J]. 金属热处理, 2018, 43(1):81-85. ZHU Guanpeng, GUO Chun, KONG Hongyu. Influence of Cr Content in Flux Cored Wire on Mechanical Properties of Low Alloy Steel Weld Metal[J]. Heat Treatment of Metals, 2018, 43(1):81-85. [32]蔡养川, 罗震. Cr对高强钢焊条焊缝组织和性能的影响[J]. 焊管, 2015, 38(6):20-25. CAI Yangchuan, LUO Zhen. Effect of Heat Chrome Element on Microstructure and Mechanical Properties of High-strength Steel Electrode Weld[J]. Welded Pipe and Tube, 2015, 38(6):20-25. [33]武丹, 刘政军, 裘荣鹏, 等. 药芯焊丝中Cr含量对WQ960高强钢焊接接头力学性能的影响[J]. 热加工工艺, 2018, 47(15):43-47. WU Dan, LIU Zhengjun, QIU Rongpeng, et al. Effect of Cr Content in Flux Cored Wire on Mechanical Properties of WQ960 High Strength Steel Welded Joint[J]. Hot Working Technology, 2018, 47(15):43-47. [34]MAO G J, CAYRON C, CAO R, et al. The Relationship between Low-temperature Toughness and Secondary Crack in Low-carbon Bainitic Weld Metals[J]. Materials Characterization, 2018, 145:516-526. [35]MAO G J, CAO R, CAYRON C, et al. Microstructural Evolution and Mechanical Property Development with Nickel Addition in Low-carbon Weld Butt Joints[J]. Journal of Materials Processing Technology, 2018, 262:638-679. [36]刘政军, 裘荣鹏, 武丹, 等. 微合金元素镍和铌对金属粉芯焊丝焊接接头性能的影响[J]. 焊接, 2017, (8):1-6. LIU Zhengjun, QIU Rongpeng, WU Dan, et al. Influence of Microalloying Elements Nickel and Niobium on the Performance of Metal Powder Cored Wire Welding Joint[J]. Welding and Joining, 2017(8):1-6. [37]刘政军, 裘荣鹏, 武丹, 等. 合金元素Ni和Mo对高强钢金属粉芯型药芯焊丝焊接接头力学性能的影响[J]. 热加工工艺, 2017, 46(19):59-62. LIU Zhengjun, QIU Rongpeng, WU Dan, et al. Effect of Alloying Elements Ni and Mo on Mechanical Properties of Metal Powder Flux Cored Wire Welding Joint of High Strength Steel[J]. Hot Working Technology, 2017, 46(19):59-62. [38]陈雨来, 董长征, 蔡庆伍, 等. Mo和Ni对高强无碳化物贝氏体钢组织转变与力学性能的影响[J]. 材料工程, 2013(9):16-21. CHEN Yulai, DONG Changzheng, CAI Qingwu, et al. Effect of Mo and Ni on Microstructure and Mechanical Properties of Carbide-free Bainite Ultra-high Strength Steels[J]. Journal of Materials Engineering, 2013(9):16-21. [39]孔红雨, 朱官朋, 曾志伟, 等. 药芯焊丝Mo含量对低合金钢焊缝金属性能影响[J]. 材料开发与应用, 2017, 32(2):18-22. KONG Hongyu, ZHU Guanpeng, ZENG Zhiwei, et al. Influence of Mo in Flux Cored Wires on the Mechanical Properties of Low Alloy Steel Weld Metal[J]. Development and Application of Materials, 2017, 32(2):18-22. [40]LEE H W, KIM Y H, LEE S H, et al. Effect of Boron Contents on Weldability in High Strength Steel[J]. Journal of Mechanical Science and Technology, 2007, 21:771-778. [41]宋峰雨, 刘思远, 张元祥. Ti、B对780MPa级焊缝金属组织相变的影响[J]. 材料热处理学报, 2020, 41(11):172-178. SONG Fengyu, LIU Siyuan, ZHANG Yuanxiang. Effect of Ti and B on Microstructure Transformation of 780MPa Grade Weld Metal[J]. Transactions of Materials and Heat Treatment, 2020, 41(11):172-178. [42]ILMAN M N, COCHRANE R C, EVANS G M. Effect of Nitrogen and Boron on the Development of Acicular Ferrite in Reheated C-Mn-Ti Steel Weld Metals[J]. Welding in the World, 2012, 56:41-50. [43]SEO J S, KIM H J, LEE C. Effect of Ti Addition on Weld Microstructure and Inclusion Characteristics of Bainitic GMA Welds[J]. ISIJ International, 2013, 53(5):880-886. [44]KANG Y J, JANG J H, PARK J H, et al. Influence of Ti on Non-metallic Inclusion Formation and Acicular Ferrite Nucleation in High-strength Low-alloy Steel Weld Metals[J]. Metals and Materials International, 2014, 20:119-127. [45]BEIDOKHTI B, KOUKABI A H, DOLATI A, et al. Effect of Titanium Addition on the Microstructure and Inclusion Formation in Submerged Arc Welded HSLA Pipeline Steel[J]. Journal of Materials Processing Technology, 2009, 209(8):4027-4035. [46]WANG C, MISRA R D K, SHI M H, et al. Transformation Behavior of a Ti-Zr Deoxidized Steel:Microstructure and Toughness of Simulated Coarse Grain Heat Affected Zone[J]. Materials Science and Engineering A, 2014, 594:218-228. [47]CHAI F, YANG C F, SU H, et al. Effect of Zr Addition to Ti-killed Steel on Inclusion Formation and Microstructural Evolution in Welding Induced Coarse-grained Heat Affected Zone[J]. Acta Metallurgica Sinica, 2008, 21:220-226. [48]蔡养川, 刘仁培, 成中庚. 稀土元素对800MPa高强钢焊条性能的影响[J]. 焊接, 2013(8):60-63. CAI Yangchuan, LIU Renpei, CHENG Zhonggeng. Effect of Rare Earth Elements on Properties of 800 MPa High-strength Steel Electrode[J]. Welding and Joining, 2013(8):60-63. [49]YU H, ZHANG T L, CHEN Y, et al. Effect of CeO2 on Microstructures and Mechanical Properties of Welded High-strength Steel Weld Metal[J]. Materials Research Express, 2021, 8:016515. [50]ADABAVAZEH Z, HWANG W S, YU H. Effect of Adding Cerium on Microstructure and Morphology of Ce-based Inclusions Formed in Low-carbon Steel[J]. Scientific Reports, 2017, 7:46503. [51]GUO A M, LI S R, GUO J, et al. Effect of Zirconium Addition on the Impact Toughness of the Heat Affected Zone in a High Strength Low Alloy Pipeline Steel[J]. Materials Characterization, 2008, 59:134-139. [52]POURIAMANESH R, DEHGHANI K, VALLANT R, et al. Effect of Ti Addition on the Microstructure and Mechanical Properties of Weld Metals in HSLA Steels[J]. Journal of Materials Engineering and Performance, 2018, 27:6058-6068. [53]VEZZU S, SCAPPIN M, BOARETTO D, et al. On the Effect of Slight Variations of Si, Mn, and Ti on Inclusions Properties, Microstructure, and Mechanical Properties of YS460 C-Mn Steel Welds[J]. Metallography, Microstructure, and Analysis, 2019, 8:292-306. [54]JORGE J C F, BOTT I S, SOUZA L F G, et al. Mechanical and Microstructural Behavior of C-Mn Steel Weld Deposits with Varying Titanium Contents[J]. Journal of Materials Research and Technology, 2019, 8:4659-4671. [55]MUSA M H, MALEQUE M A, ALI M Y, et al. Heat Affected Zone Morphology of TIG Torch Welded HSLA Steel in Presence of Ti and V Microalloying Elements[J]. Encyclopedia of Renewable and Sustainable Materials, 2020, 4:439-444. [56]YANG L J, WANG Y W, SUN T, et al. Microstructure and Mechanical Properties of FCTIG-welded DH36 Steel with Rutile-type and Basic-type Flux Cored Wires[J]. Journal of Materials Processing Technology, 2020, 275:1-9. [57]SEO K, KIM Y M, KIM H J, et al. Characterization of Inclusions Formed in Ti-containing Steel Weld Metals[J]. ISIJ International, 2015, 55:1730-1738. [58]SUITO H, KARASEV A V, HAMADA M, et al. Influence of Oxide Particles and Residual Elements on Microstructure and Toughness in the Heat-affected Zone of Low-carbon Steel Deoxidized with Ti and Zr[J]. ISIJ International, 2011, 51:1151-1162. [59]温培银. F69A4-ECM4-M4金属芯埋弧焊丝及热输入对熔敷金属强韧性影响的研究[D]. 北京:北京工业大学, 2016. WEN Peiyin. Study on F69A4-ECM4-M4 Metal-cored Submerged Arc Welding Wire and Effect of Heat Input on Strengthening and Toughening of Deposited Metal[D]. Beijing:Beijing University of Technology, 2016. [60]徐慧子. 稀土Ce对大热输入埋弧焊焊缝金属显微组织与性能的影响[D]. 武汉:华中科技大学, 2011. XU Huizi. Studies on the Influence of Rare Earth Ce on Microstructure and Properties of Huge Heat Input SAW Seam Metal[D]. Wuhan:Huazhong University of Science and Technology, 2011. [61]SONG S H, ZHENG L. Effect of Thermal Cycling Induced Phosphorus Grain Boundary Segregation on Embrittlement of Welding Heat Affected Zones in 2.25Cr-1Mo Steel[J]. Materials Science and Technology, 2014, 30:1378-1386. [62]AN T, ZHANG S, FENG M. Synergistic Action of Hydrogen Gas and Weld Defects on Fracture Toughness of X80 Pipeline Steel[J]. International Journal of Fatigue, 2019, 120:23-32. [63]EROFEEV V, GREBENSHCHIKOVA O, TROYANOVSKAYA I, et al. Hydrogen Impact on the Origin and Propagation of Welded Cold Cracks in Low-alloy Steels at Low Temperatures[J]. Materials Today:Proceedings, 2019, 19:1891-1894. [64]王斌, 周翠, 李良君, 等. X100管线钢焊接接头抗HIC性能研究[J]. 中国腐蚀与防护学报, 2014, 34(3):237-242. WANG Bin, ZHOU Cui, LI Liangjun, et al. Resistance to Hydrogen Induced Corrosion Cracking of Weld Joint of X100 Pipeline Steel[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(3):237-242. [65]RONEVICH J A, SONG E J, FENG Z L, et al. Fatigue Crack Growth Rates in High Pressure Hydrogen Gas for Multiple X100 Pipeline Welds Accounting for Crack Location and Residual Stress[J]. Engineering Fracture Mechanics, 2020, 228:1-13. [66]栗卓新, 张天理, KIM H J. 低合金高强钢焊缝金属中AF的研究进展[J]. 中国材料进展, 2012, 31(1):50-55. LI Zhuoxin, ZHANG Tianli, KIM H J. Research Progress on AF in Weld Metal for HSLA Steel[J]. Materials China, 2012, 31(1):50-55. [67]SHI Z G, WANG R Z, SU H, et al. Effect of Nitrogen Content on the Second Phase Particles in V-Ti Microalloyed Shipbuilding Steel during Weld Thermal Cycling[J]. Materials and Design, 2016, 96:241-258. [68]ZHANG T L, LI Z X, KOU S, et al. Effect of Inclusions on Microstructure and Toughness of Deposited Metals of Self-shielded Flux Cored Wires[J]. Materials Science and Engineering A, 2015, 628:332-339. [69]SEO J S, LEE C H, KIM H J. Influence of Oxygen Content on Microstructure and Inclusion Characteristics of Bainitic Weld Metals[J]. ISIJ International, 2013, 53:279-285. [70]范希营, 郭永环. 氧化铈对低合金钢焊条焊缝硫磷的影响[J]. 焊接学报, 2010, 31(12):70-73. FAN Xiying, GUO Yonghuan. Influence of Ceria on Phosphorus and Sulphur of Low Alloy Steel Weld[J]. Transactions of the China Welding Institution, 2010, 31(12):70-73. [71]LAN L Y, YU M, QIU C L. On the Local Mechanical Properties of Isothermally Transformed Bainite in Low Carbon Steel[J]. Materials Science and Engineering A, 2019, 742:442-449. [72]CAI Y C, LIU R P, WEI Y H, et al. Influence of Y on Microstructures and Mechanical Properties of High Strength Steel Weld Metal[J]. Materials and Design, 2016, 62:83-90. [73]SEO J S, LEE C H, KIM H J. Influence of Oxygen Content on Microstructure and Inclusion Characteristics of Bainitic Weld Metals[J]. ISIJ International, 2013, 53:279-85. [74]KUCUKOMEROGLU T, AKTARER S M, CAM G. Investigation of Mechanical and Microstructural Properties of Friction Stir Welded Dual Phase(DP) Steel[J]. IOP Conference Series:Materials Science and Engineering, 2019, 629:012010. [75]ILIC A, IVANOVIC L, LAZIC V, et al. Welding Method as Influential Factor of Mechanical Properties at High-strength Low-alloyed Steels[J]. IOP Conference Series:Materials Science and Engineering, 2019, 659:012036. [76]RAMDAN R D, KOSWARA A L, SURASNO,et al. Metallurgy and Mechanical Properties Variation with Heat Input during Dissimilar Metal Welding between Stainless and Carbon Steel[J]. IOP Conference Series:Materials Science and Engineering, 2018, 307:012056. |
[1] | 倪敬, 崔智, 何利华, 付新, 朱泽飞. 聚四氟乙烯材料切削工艺和应用研究进展[J]. 中国机械工程, 2024, 35(03): 498-514. |
[2] | 张文军, 王文奇, 张晓东, 林威, 张燕东, 白振华, . 1180 MPa级超高强钢冷连轧过程的厚度综合控制技术[J]. 中国机械工程, 2024, 35(02): 347-353,370. |
[3] | 高嵩, 孙荧力, 李奇涵, 盈亮, 郝兆朋, 张邦成. 钛合金型材多点三维热拉弯成形工艺及其微观组织演化[J]. 中国机械工程, 2023, 34(24): 2986-2995,3014. |
[4] | 王伟, 马乾伦, 白振华, 王子昂. 基于梯度提升决策树的冷轧高强钢卷力学性能预测[J]. 中国机械工程, 2023, 34(18): 2222-2229. |
[5] | 刘莹, 陈越, 赵雪利, 于同敏, 祝铁丽, . 超声辅助注射成形碳纤维增强聚丙烯制件性能研究[J]. 中国机械工程, 2023, 34(16): 1975-1981. |
[6] | 李光俊, 段宏, 徐磊, 阚琛, 刘忠亮, 高晓东. Al7.8Co20.6Cr12.2Fe11.5Ni40.7Ti7.2高熵超合金的摩擦磨损行为研究[J]. 中国机械工程, 2023, 34(13): 1568-1575. |
[7] | 周后明, 陈皓月, 李神贵. 基于梯度结构的Al2O3/ZrO2陶瓷刀具材料的制备及其力学性能[J]. 中国机械工程, 2023, 34(10): 1199-1207. |
[8] | 高恺, 李坤, 顾红历, . 镀锌量对低合金钢/5052铝合金感应静压焊接头微观组织与力学性能的影响[J]. 中国机械工程, 2023, 34(10): 1220-1229. |
[9] | 杨硕, 张杰, 孔宁, 王浩威, 王晓宇, 庄原. 航天用大展收比豆荚结构变形规律模型及其仿真验证[J]. 中国机械工程, 2023, 34(07): 780-788. |
[10] | 张岩, 黄传真, 刘含莲. 氮化碳基陶瓷刀具材料的制备与力学性能研究[J]. 中国机械工程, 2023, 34(03): 352-358,368. |
[11] | 方学伟, 蒋笑, 王喆, 武晓康, 黄科. ER120S-G高强钢电弧增材制造的工艺优化[J]. 中国机械工程, 2023, 34(02): 218-225. |
[12] | 蒋创宇, 张保强, 陈云, 王存福, 罗华耿, 胡杰翔, 曹龙超. Gyroid结构力学性能及数值收敛性研究[J]. 中国机械工程, 2022, 33(23): 2790-28000. |
[13] | 焦晨, 晁龙, 朱磊, 沈理达, 梁绘昕, 戴宁, 王长江, 孙骏. 面向骨科植入物的仿生多孔结构设计与制造方法[J]. 中国机械工程, 2022, 33(23): 2844-2850. |
[14] | 汤永锋, 路平, 刘斌, 江开勇, 颜丙功, 刘嘉伟, 韩伟, . 不同梯度变化方式的不规则多孔结构设计与力学性能分析[J]. 中国机械工程, 2022, 33(23): 2859-2866. |
[15] | 李守港, 刘鹏, 刘祥, 胡志力, . 高强钢热冲压结构件三维激光切割回弹规律及精度补偿方法[J]. 中国机械工程, 2022, 33(22): 2741-2747. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||