[1]LEI Yaguo, LI Naipeng, GUO Liang, et al. Machinery Health Prognostics: a Systematic Review from Data Acquisition to RUL Prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834.
[2]朱朔,白瑞林,吉峰.改进CHSMM的滚动轴承剩余寿命预测方法[J].机械传动, 2018, 42(10): 46-52.
ZHU Shuo, BAI Ruilin, JI Feng. Improved CHSMM Rolling Bearing Residual Life Prediction Method[J]. Journal of Mechanical Transmission, 2018, 42(10): 46-52.
[3]CHENG Fangzhou, QU Liyan, QIAO Wei, et al. Enhanced Particle Filtering for Bearing Remaining Useful Life Prediction of Wind Turbine Drivetrain Gearboxes[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4738-4748.
[4]孟文俊,张四聪,淡紫嫣,等.滚动轴承寿命动态预测新方法[J].振动、测试与诊断,2019,39(3):652-658.
MENG Wenjun, ZHANG Sicong, DAN Ziyan, et al. A New Method for Dynamic Prediction of Rolling Bearing Life[J]. Vibration,Test and Diagnosis, 2019, 39 (3): 652-658.
[5]王新,汪东甲.基于变分模态分解和极限学习机轴承寿命预测[J].制造业自动化,2018,40(11):36-39.
WANG Xin, WANG Dongjia. Prediction of Bearing Life Based on Variational Mode Decomposition and Extreme Learning Machine[J]. Manufacturing Automation, 2018, 40(11): 36-39.
[6]邱晓梅,隋文涛,王峰,等.基于相关系数和BP神经网络的轴承剩余寿命预测[J].组合机床与自动化加工技术,2019(4):63-65.
QIU Xiaomei, SUI Wentao, WANG Feng, et al. Bearing Residual Life Prediction Based on Correlation Coefficient and BP Neural Network[J]. Combined Machine Tools and Automated Machining Technology, 2019(4): 63-65.
[7]REN Lei, SUN Yaqiang, CUI Jin, et al. Bearing Remaining Useful Life Prediction Based on Deep Autoencoder and Deep Neural Networks[J]. Journal of Manufacturing Systems, 2018, 48: 71-77.
[8]李华新,王衍学.基于分层稀疏编码的轴承剩余寿命预测方法[J].现代制造工程,2019(5):7-12.
LI Huaxin, WANG Yanxue. Prediction Method of Bearing Residual Life Based on Layered Sparse Coding[J]. Modern Manufacturing Engineering, 2019(5): 7-12.
[9]杨宇,张娜,程军圣.全参数动态学习深度信念网络在滚动轴承寿命预测中的应用[J].振动与冲击,2019,38(10):199-205.
YANG Yu, ZHANG Na, CHENG Junsheng .Application of Full Parameter Dynamic Learning Depth Belief Network in Life Prediction of Rolling Bearings[J]. Journal of Vibration and Shock, 2019, 38(10): 199-205.
[10]张西宁,向宙,唐春华.一种深度卷积自编码网络及其在滚动轴承故障诊断中的应用[J].西安交通大学学报,2018,52(7):1-8.
ZHANG Xining, XIANG Zhou, TANG Chunhua. A Deep Convolution Self-coded Network and Its Application in Fault Diagnosis of Rolling Bearings[J]. Journal of Xi’an Jiaotong University, 2018, 52(7): 1-8.
[11]佘道明,贾民平,张菀.一种新型深度自编码网络的滚动轴承健康评估方法[J].东南大学学报(自然科学版),2018,48(5):801-806.
SHE Daoming, JIA Minping, ZHANG Wan. A Health Evaluation Method for Rolling Bearings Based on a Novel Deep Self-coded Network[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(5): 801-806.
[12]XIA Min, LI Teng, SHU Tongxin, et al. A Two-stage Approach for the Remaining Useful Life Prediction of Bearings Using Deep Neural Networks[J]. IEEE Transactions on Industrial Informatics, 2018, 15(6): 3703-3711.
[13]WANG Qibin, ZHAO Bo, MA Hongbo, et al. A Method for Rapidly Evaluating Reliability and Predicting Remaining Useful Life Using Two-dimensional Convolutional Neural Network with Signal Conversion[J]. Journal of Mechanical Science and Technology, 2019, 33(6): 2561-2571.
[14]ZHU Jun, CHEN Nan, PENGWeiwen. Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3208-3216.
[15]LI Xiang, ZHANG Wei, DING Qian. Deep Learning-based Remaining Useful Life Estimation of Bearings Using Multi-scale Feature Extraction[J]. Reliability Engineering & System Safety, 2019, 182: 208-218.
[16]李梅,宁德军,郭佳程.基于注意力机制的CNN-LSTM模型及其应用[J].计算机工程与应用,2019,55(13):20-27.
LI Mei, NING Dejun, GUO Jiacheng. CNN-LSTM Model Based on Attention Mechanism and Its Application[J]. Computer Engineering and Applications, 2019, 55(13): 20-27.
[17]张继冬,邹益胜,邓佳林,等.基于全卷积层神经网络的轴承剩余寿命预测[J].中国机械工程,2019,30(18):2231-2235.
ZHANG Jidong, ZOU Yisheng, DENG Jialin, et al.Bearing Remaining Life Prediction Based on Full Convolutional Neural Network[J].China Mechanical Engineering,2019,30(18): 2231-2235. |