China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (8): 1757-1766.DOI: 10.3969/j.issn.1004-132X.2025.08.011
Received:
2024-07-12
Online:
2025-08-25
Published:
2025-09-18
Contact:
Dan XIE
通讯作者:
谢丹
作者简介:
黄勇刚,男,1976年生,副教授、博士。研究方向为机构学与机器人及机械系统CAE。E-mail:hyg@ctbu.edu.cn。
基金资助:
CLC Number:
Yonggang HUANG, Dan XIE. Curvature Parameterization Model for Variable Cross-section Euler Beams under Large Deflection[J]. China Mechanical Engineering, 2025, 36(8): 1757-1766.
黄勇刚, 谢丹. 大挠度变截面欧拉梁曲率参数化模型[J]. 中国机械工程, 2025, 36(8): 1757-1766.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.08.011
精确解 | 3参数模型 | 5参数模型 | |||
---|---|---|---|---|---|
值 | 误差/% | 值 | 误差/% | ||
应变能/J | 0.041 251 | 0.041 035 | 0.52 | 0.041 245 | 0.0146 |
角刚度/(N·m·rad-1) | 0.019 393 | 0.019 496 | 0.53 | 0.019 396 | 0.0145 |
Tab.1 The results of curvature model and exact solution
精确解 | 3参数模型 | 5参数模型 | |||
---|---|---|---|---|---|
值 | 误差/% | 值 | 误差/% | ||
应变能/J | 0.041 251 | 0.041 035 | 0.52 | 0.041 245 | 0.0146 |
角刚度/(N·m·rad-1) | 0.019 393 | 0.019 496 | 0.53 | 0.019 396 | 0.0145 |
参数类别 | 载荷1 | 载荷2 | |
---|---|---|---|
载荷 | Fx /N | -45.0 | -22.5 |
Fy /N | 15.0 | 7.5 | |
M(N·m) | 2 | 1 | |
有限元 [ | x(L)/m | 0.1599 | 0.1880 |
y(L)/m | 0.062 59 | 0.038 11 | |
θ(L)/rad | 2.5974 | 1.3492 | |
7参数模型 | x(L)/m | 0.1597 | 0.1879 |
y(L)/m | 0.062 03 | 0.038 22 | |
θ(L)/rad | 2.6765 | 1.3737 | |
相对误差/% | x(L)/m | 0.15 | 0.07 |
y(L)/m | 0.90 | 0.28 | |
θ(L)/rad | 3.05 | 1.18 |
Tab.2 Beam tip coordinates and angle under two load cases
参数类别 | 载荷1 | 载荷2 | |
---|---|---|---|
载荷 | Fx /N | -45.0 | -22.5 |
Fy /N | 15.0 | 7.5 | |
M(N·m) | 2 | 1 | |
有限元 [ | x(L)/m | 0.1599 | 0.1880 |
y(L)/m | 0.062 59 | 0.038 11 | |
θ(L)/rad | 2.5974 | 1.3492 | |
7参数模型 | x(L)/m | 0.1597 | 0.1879 |
y(L)/m | 0.062 03 | 0.038 22 | |
θ(L)/rad | 2.6765 | 1.3737 | |
相对误差/% | x(L)/m | 0.15 | 0.07 |
y(L)/m | 0.90 | 0.28 | |
θ(L)/rad | 3.05 | 1.18 |
扭转刚度/(N·m·rad-1) | 最大应力/MPa | |
---|---|---|
有限元[ | 1.220 | 63.30 |
10参数模型 | 1.248 | 66.27 |
相对误差/% | 2.28 | 4.70 |
Tab.3 The results of curvature model and FEM
扭转刚度/(N·m·rad-1) | 最大应力/MPa | |
---|---|---|
有限元[ | 1.220 | 63.30 |
10参数模型 | 1.248 | 66.27 |
相对误差/% | 2.28 | 4.70 |
[1] | HOWELL L L, OLSEN B M, MAGLEBY S P. Handbook of Compliant Mechanisms[M]. Chichester:Wiley, 2013. |
[2] | 孙江宏, 易源霖, 赵秋玲, 等. MEMS中变截面梁弯曲数学模型的建立[J]. 中国机械工程, 2014, 25(22): 3061-3065. |
SUN Jianghong, YI Yuanlin, ZHAO Qiuling, et al. Mathematical Modeling of Variable Cross-section Beam Bending in MEMS[J]. China Mechanical Engineering, 2014, 25(22): 3061-3065. | |
[3] | MEI F, BI S, CHEN L, et al. A Novel Design of Planar High-compliance Joint in Variable Stiffness Module with Multiple Uniform Stress Leaf Branches on Rigid-flexible Integral Linkage[J]. Mechanism and Machine Theory, 2022, 174:104889. |
[4] | PATIBALLA S, SHANLEY J F, KRISHNAN G. Estimating Optimized Stress Bounds in Early Stage Design of Compliant Mechanisms[J]. Journal of Mechanical Design, 2017, 139(6):062302-1. |
[5] | BILANCIA P, BAGGETTA M, BERSELLI G, et al. Design of a Bio-inspired Contact-aided Compliant Wrist[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67:102028. |
[6] | LIU M, DOMINO L, VELLA D. Tapered Elasticæ as a Route for Axisymmetric Morphing Structures[J]. Soft Matter, 2020;16(33):7739-7750. |
[7] | FREIRE G J, BOOKER J D, MELLOR P H. 2D Shape Optimization of Leaf-type Crossed Flexure Pivot Springs for Minimum Stress[J]. Precision Engineering, 2015, 42:6-21. |
[8] | BILANCIA P, BERSELLI G, PALLI G. Virtual and Physical Prototyping of a Beam-based Variable Stiffness Actuator for Safe Human-machine Interaction[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65:101886. |
[9] | KUMAR D, WANG Z, POH L H, et al. Isogeometric Shape Optimization of Smoothed Petal Auxetics with Prescribed Nonlinear Deformation[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 356:16-43. |
[10] | BERSELLI G. Design and Testing of a Monolithic Compliant Constant Force Mechanism[J]. Smart Materials & Structures, 2020, 29(4):044001. |
[11] | PLAUT R, VIRGIN L. Optimal Design of Cantilevered Elastica for Minimum Tip Deflection under Self-weight[J]. Structural & Multidisciplinary Optimization, 2022, 43(5):657-664. |
[12] | ABDALLA H M A, CASAGRANDE D. Optimal Area Variation for Maximum Stiffness Isostatic Beams under Parametric Linear Distributed Loads[J].Mechanics Research Communications, 2021, 111:103659. |
[13] | BILANCIA P, BAGGETTA M, HAO G, et al. A Variable Section Beams Based Bi-BCM Formulation for the Kinetostatic Analysis of Cross-axis Flexural Pivots[J]. International Journal of Mechanical Sciences, 2021,1:106587. |
[14] | YANG M, DU Z, SUN L, et al. Optimal Design, Modeling and Control of a Long Stroke 3-PRR Compliant Parallel Manipulator with Variable Thickness Flexure Pivots[J]. Robotics and Computer-Integrated Manufacturing, 2019, 60(12):23-33. |
[15] | 刘姣姣, 付莉莉, 高超,等. 变截面多稳态梁结构减振吸能分析与优化设计[J]. 计算力学学报, 2023, 40(2):159-165. |
LIU Jiaojiao, FU Lili, GAO Chao, et al. Impact Energy Absorption Analysis and Design Optimization of Variable Cross-section Beam Multi-stable Structures[J]. Chinese Journal of Computational Mechanics, 2023, 40(2):159-165. | |
[16] | VALENTINI P P, CIRELLI M, PENNESTRI E. Second-order Approximation Pseudo-rigid Model of Flexure Hinge with Parabolic Variable Thickness[J]. Mechanism and Machine Theory, 2019, 136:178-189. |
[17] | WU K, ZHENG G. A Comprehensive Static Modeling Methodology via Beam Theory for Compliant Mechanisms[J]. Mechanism and Machine Theory, 2022, 169:104598. |
[18] | DADO M, AL-SADDER S. A New Technique for Large Deflection Analysis of Non-prismatic Cantilever Beams[J]. Mechanics Research Communications, 2005, 32(6):692-703. |
[19] | JEONG S, YOO H H. Shape Optimization of Bowtie-shaped Auxetic Structures Using Beam Theory[J]. Composite Structures, 2019, 224:111020. |
[20] | AL-SADDER S, AL-RAWI R A O. Finite Difference Scheme for Large-deflection Analysis of Non-prismatic Cantilever Beams Subjected to Different Types of Continuous and Discontinuous Loadings[J]. Archive of Applied Mechanics, 2006, 75(8):459-473. |
[21] | HUANG T, YUAN Y, ZHENG J L, et al. Large Deformations of Tapered Beam with Finite Integration Method[J]. Engineering Analysis with Boundary Elements, 2019, 107:115-123. |
[22] | HURTADO M A, OCHOA J. D A. Large-deflection Analysis of Prismatic and Tapered Beam-columns Using the Differential Transform Method[J]. Structures, 2020, 28:923-932. |
[23] | 夏雨, 葛仁余, 王静平, 等. 变截面Euler-Bernoulli梁稳态谐振动的微分求积法研究[J]. 安徽工程大学学报, 2021, 36(4):56-63. |
XIA Yu, GE Renyu, WANG Jingping, et al. Differential Quadrature Method for Steady-state Harmonic Vibration of Beams with Variable Cross-section[J]. Journal of Anhui Polytechnic University, 2021, 36(4):56-63. | |
[24] | KIMIAEIFAR A, LUND E, THOMSEN O T. Series Solution for Large Deflections of a Cantilever Beam with Variable Flexural Rigidity[J]. Meccanica, 2012, 47:1787-1796. |
[25] | KATSIKADELIS J T, TSIATAS G. Large Deflection Analysis of Beams with Variable Stiffness[J]. Acta Mechanica, 2003, 164:1-13. |
[26] | YANG M, DU Z, DONG W, et al. Design and Modeling of a Variable Thickness Flexure Pivot[J]. Journal of Mechanisms & Robotics, 2019, 11:014502. |
[27] | 赵春璋, 余海东, 王皓, 等. 基于绝对节点坐标法的变截面梁动力学建模与运动变形分析[J]. 机械工程学报, 2014, 50(17): 38-45. |
ZHAO Chunzhan, YU Haidong, WANG Hao, et al. Dynamic Modeling and Kinematic Behavior of Variable Cross-section Beam Based on the Absolute Nodal Coordinate Formulation[J]. Journal of Mechanical Engineering, 2014, 50(17):38-45. | |
[28] | AWTAR S, SEN S. A Generalized Constraint Model for Two-dimensional Beam Flexures: Nonlinear Load-displacement Formulation[J]. Journal of Mechanical Design, 2010, 132(8):081008. |
[29] | GAO F, LIU G Y, WU X Y, et al. Optimization Algorithm-based Approach for Modeling Large Deflection of Cantilever Beam Subject to Tip Load[J]. Mechanism and Machine Theory, 2022,167:104522. |
[30] | GAO F, LIAO W H, Wu X. Being Gradually Softened Approach for Solving Large Deflection of Cantilever Beam Subjected to Distributed and Tip Loads[J]. Mechanism and Machine Theory, 2022, 174:104879. |
[31] | LAN C C, CHENG Y J. Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions[J]. Journal of Mechanical Design, 2008, 130(7):3-11. |
[32] | 杨淼, 杜志江, 陈依, 等. 变截面交叉簧片柔性铰链的力学建模与变形特性分析[J]. 机械工程学报, 2018, 54(13):73-78. |
YANG Miao, DU Zhijiang, CHEN Yi, et al. Static Modelling and Analysis of Cross-spring Flexure Pivots with Variable Cross-section[J]. Journal of Mechanical Engineering, 2018, 54(13):73-78. | |
[33] | 谢丹, 黄勇刚. 大挠度欧拉梁三参数曲率模型及其在平面柔顺机构中的应用[J]. 机械工程学报, 2021, 57(13):144-152. |
XIE Dan, HUANG Yonggang. Novel Model with Three Curvature Variables for Euler Beam under Large Deflection and Its Application in Planar Compliant Mechanisms[J]. Journal of Mechanical Engineering, 2021, 57(13):144-152. | |
[34] | 黄勇刚, 谢丹. 平面柔顺机构大挠度弹性静力学分析的低维参数化曲率模型[J]. 中国科学:技术科学, 2022, 52:565-584. |
HUANG Yonggang, XIE Dan. Curvature-based Low Dimensional Parametric Model for Elastostatics Analysis of Planar Compliant Mechanisms under Large Deflection[J]. Scientia Sinica Technologica, 2022, 52:565-584. | |
[35] | FAROUKI R T. The Bernstein Polynomial Basis: a Centennial Retrospective[J]. Computer Aided Geometric Design, 2012, 29(6):379-419. |
[1] | LIU Min1, 2, LU Feiyang1, ZHAN Jinqing1, 2, WU Jian1, ZHU Benliang3. Topology Optimization of Compliant Mechanisms with Embedded MovablePiezoelectric Actuator Considering Minimum Length Constraints [J]. China Mechanical Engineering, 2025, 36(02): 255-264. |
[2] | FAN Dapeng;TAN Ruoyu. Applications and Research Status of Compliant Transmission Mechanisms in Fast-steering Mirrors [J]. China Mechanical Engineering, 2020, 31(24): 2899-2909. |
[3] | WANG Mingyuan1;HANG Lubin1;LIU Zhe2;HUANG Xiaobo1;CHEN Yong2;MIU Hong3. Vehicle Side Door Latch Power Release Mechanism with Variable DOF Force-adaptive-recovery Combined Compliant Pair [J]. China Mechanical Engineering, 2020, 31(12): 1437-1443. |
[4] | LI Pengfei;CAO Boyu;WANG Zhenyu;ZHAO Chen;ZHAO Rongchang. Dynamics Modeling and Analysis for a Kind of Half Outside LET Compliant Joint [J]. China Mechanical Engineering, 2019, 30(14): 1727-1733. |
[5] | Jiang Xianliang, Hong Huajie, Liu Hua, Li Zhiling. Design and Simulation Analysis of Compliant Mechanism with Two-DOF Based on Virtual Prototype [J]. China Mechanical Engineering, 2016, 27(11): 1473-1478. |
[6] | Sun Jianghong, Yi Yuanlin, Zhao Qiuling, Liu Xu. Mathematical Modeling of Variable Cross-section Beam Bending in MEMS [J]. China Mechanical Engineering, 2014, 25(22): 3061-3065. |
[7] | Kang Yu, Zhao Liang, Guo Konghui, . Modeling and Parameter Identification of Shock Absorber with Consideration of Throttle-Slices' Large Deflection [J]. China Mechanical Engineering, 2014, 25(18): 2544-2549,2555. |
[8] | DIAO Lei, GONG Yan. Rotation Precision Analysis of Corner-filleted Flexure Hinge [J]. China Mechanical Engineering, 2013, 24(6): 715-720. |
[9] | . Compliance Matrix Analysis of Corner-filleted Flexure Hinge [J]. China Mechanical Engineering, 2013, 24(18): 2462-2468. |
[10] | Li Shihua;Gong Wen;Li Fujuan;Jiang Shan. Stiffness and Dynamics Analysis of a Novel 3-RPC Compliant Precision Stage [J]. China Mechanical Engineering, 2013, 24(17): 2317-2323. |
[11] | NI Yun-1, TIE Jin-Jing-2, SHU Da-Chang-3. Multi-objective Topological Optimum Design of Compliant Mechanisms Using Hybrid Cellular Automata Method [J]. China Mechanical Engineering, 2012, 23(7): 860-864. |
[12] |
ZHANG Ran, CHU Jin-Kui, LIU Shuai, ZHANG Cheng.
Design and Size Optimization of Compliant Electrothermal Microgripper
[J]. China Mechanical Engineering, 2010, 21(17): 2028-2033.
|
[13] |
Xu Qiang;Liao Qizheng;Wei Shimin;Huang Xiguang.
Construction Principle and Static Torque of Translational Meshing Motor Integrated with Compliant Mechanism [J]. J4, 2009, 20(03): 0-369. |
[14] | Wang Wenjing; Yu Yueqing. Driving Characteristics Analysis of Planar Compliant Mechanisms [J]. J4, 2009, 20(02): 0-130. |
[15] | Du Yixian Chen Liping Luo Zhen. Topology Optimization Design of Large-displacement Compliant Mechanisms Using Meshless Methods [J]. China Mechanical Engineering, 2008, 19(2): 130-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||