China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 2862-2869.DOI: 10.3969/j.issn.1004-132X.2025.12.007
Xin DAI1,2(
), Huanlao LIU1,2(
), Yulin WANG1,2, Xiang LI1,2
Received:2025-03-05
Online:2025-12-25
Published:2025-12-31
Contact:
Huanlao LIU
戴鑫1,2(
), 刘焕牢1,2(
), 王宇林1,2, 李想1,2
通讯作者:
刘焕牢
作者简介:戴鑫,男,1996年生,硕士研究生。研究方向为数控装备技术及其动力学。E-mail:qq564417523@126.com基金资助:CLC Number:
Xin DAI, Huanlao LIU, Yulin WANG, Xiang LI. A Key Geometric Error Identification Method for CNC Machine Tools Based on Machining Trajectory Sensitivity Indicators[J]. China Mechanical Engineering, 2025, 36(12): 2862-2869.
戴鑫, 刘焕牢, 王宇林, 李想. 一种基于加工轨迹灵敏度指标的数控机床关键几何误差辨识方法[J]. 中国机械工程, 2025, 36(12): 2862-2869.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.12.007
| PDGEs | 运动轴 | 线性误差 | 角度误差 | ||
| X轴 | δx (x),δy (x),δz (x) | εx (x),εy (x),εz (x) | |||
| Y轴 | δx (y),δy (y),δz (y) | εx (y),εy (y),εz (y) | |||
| Z轴 | δx (z),δy (z),δz (z) | εx (z),εy (z),εz (z) | |||
| A轴 | δx (a),δy (a),δz (a) | εx (a),εy (a),εz (a) | |||
| C轴 | δx (c),δy (c),δz (c) | εx (c),εy (c),εz (c) | |||
| PIGEs | 运动轴 | 垂直度误差 | 线性误差 | 角度误差 | |
| 平动轴 | Syx,Szx,Szy | ||||
| A轴 | δyoa,δzoa | εboa,εcoa | |||
| C轴 | δxoc,δyoc | εaoc,εboc | |||
Tab.1 41 geometric errors of AC dual rotary table 5-axis machine tools
| PDGEs | 运动轴 | 线性误差 | 角度误差 | ||
| X轴 | δx (x),δy (x),δz (x) | εx (x),εy (x),εz (x) | |||
| Y轴 | δx (y),δy (y),δz (y) | εx (y),εy (y),εz (y) | |||
| Z轴 | δx (z),δy (z),δz (z) | εx (z),εy (z),εz (z) | |||
| A轴 | δx (a),δy (a),δz (a) | εx (a),εy (a),εz (a) | |||
| C轴 | δx (c),δy (c),δz (c) | εx (c),εy (c),εz (c) | |||
| PIGEs | 运动轴 | 垂直度误差 | 线性误差 | 角度误差 | |
| 平动轴 | Syx,Szx,Szy | ||||
| A轴 | δyoa,δzoa | εboa,εcoa | |||
| C轴 | δxoc,δyoc | εaoc,εboc | |||
| 编号 | 误差 | 灵敏度系数 | 编号 | 误差 | 灵敏度系数 | 编号 | 误差 | 灵敏度系数 |
|---|---|---|---|---|---|---|---|---|
| 1 | δx (x) | 0.039 590 378 | 15 | δz (z) | 0.052 098 646 | 29 | εy (c) | 0.077 875 787 |
| 2 | δy (x) | 0.023 882 331 | 16 | εx (z) | 0.003 008 807 | 30 | εz (c) | 0.121 208 181 |
| 3 | δz (x) | 0.018 964 896 | 17 | εy (z) | 0.020 056 488 | 31 | Syx | 0.018 919 619 |
| 4 | εx (x) | 0.018 228 158 | 18 | εz (z) | 0 | 32 | Sxz | 0.023 252 217 |
| 5 | εy (x) | 0.018 263 177 | 19 | δx (a) | 0.003 232 143 | 33 | Syz | 0.013 672 586 |
| 6 | εz (x) | 0 | 20 | δy (a) | 0.011 134 348 | 34 | δyoa | 0.014 616 967 |
| 7 | δx (y) | 0.002 877 538 | 21 | δz (a) | 0.000 248 661 | 35 | δzoa | 0.010 019 259 |
| 8 | δy (y) | 0.000 194 078 | 22 | εx (a) | 0.017 879 907 | 36 | εboa | 0.030 208 008 |
| 9 | δz (y) | 0.004 629 420 | 23 | εy (a) | 0.008 465 806 | 37 | εcoa | 0.028 674 693 |
| 10 | εx (y) | 0.010 945 264 | 24 | εz (a) | 0.032 686 056 | 38 | δxoc | 0 |
| 11 | εy (y) | 0.002 425 068 | 25 | δx (c) | 0.036 290 615 | 39 | δyoc | 0.018 263 456 |
| 12 | εz (y) | 0.000 783 054 | 26 | δy (c) | 0.103 225 176 | 40 | εaoc | 0.022 979 153 |
| 13 | δx (z) | 0.100 547 982 | 27 | δz (c) | 0.000 117 501 | 41 | εboc | 0.013 238 892 |
| 14 | δy (z) | 0.046 678 411 | 28 | εx (c) | 0.030 617 272 |
Tab.2 41 geometric error codes and their sensitivity coefficients
| 编号 | 误差 | 灵敏度系数 | 编号 | 误差 | 灵敏度系数 | 编号 | 误差 | 灵敏度系数 |
|---|---|---|---|---|---|---|---|---|
| 1 | δx (x) | 0.039 590 378 | 15 | δz (z) | 0.052 098 646 | 29 | εy (c) | 0.077 875 787 |
| 2 | δy (x) | 0.023 882 331 | 16 | εx (z) | 0.003 008 807 | 30 | εz (c) | 0.121 208 181 |
| 3 | δz (x) | 0.018 964 896 | 17 | εy (z) | 0.020 056 488 | 31 | Syx | 0.018 919 619 |
| 4 | εx (x) | 0.018 228 158 | 18 | εz (z) | 0 | 32 | Sxz | 0.023 252 217 |
| 5 | εy (x) | 0.018 263 177 | 19 | δx (a) | 0.003 232 143 | 33 | Syz | 0.013 672 586 |
| 6 | εz (x) | 0 | 20 | δy (a) | 0.011 134 348 | 34 | δyoa | 0.014 616 967 |
| 7 | δx (y) | 0.002 877 538 | 21 | δz (a) | 0.000 248 661 | 35 | δzoa | 0.010 019 259 |
| 8 | δy (y) | 0.000 194 078 | 22 | εx (a) | 0.017 879 907 | 36 | εboa | 0.030 208 008 |
| 9 | δz (y) | 0.004 629 420 | 23 | εy (a) | 0.008 465 806 | 37 | εcoa | 0.028 674 693 |
| 10 | εx (y) | 0.010 945 264 | 24 | εz (a) | 0.032 686 056 | 38 | δxoc | 0 |
| 11 | εy (y) | 0.002 425 068 | 25 | δx (c) | 0.036 290 615 | 39 | δyoc | 0.018 263 456 |
| 12 | εz (y) | 0.000 783 054 | 26 | δy (c) | 0.103 225 176 | 40 | εaoc | 0.022 979 153 |
| 13 | δx (z) | 0.100 547 982 | 27 | δz (c) | 0.000 117 501 | 41 | εboc | 0.013 238 892 |
| 14 | δy (z) | 0.046 678 411 | 28 | εx (c) | 0.030 617 272 |
| 方案 | 机床精度条件 | |
|---|---|---|
| 11项关键几何误差 | 剩余30项几何误差 | |
| 一 | 不补偿 | 不补偿 |
| 二 | 补偿误差值的90% | 不补偿 |
| 三 | 不补偿 | 补偿误差值的90% |
| 四 | 补偿误差值的90% | 补偿误差值的90% |
Tab.3 4 accuracy compensation design methods
| 方案 | 机床精度条件 | |
|---|---|---|
| 11项关键几何误差 | 剩余30项几何误差 | |
| 一 | 不补偿 | 不补偿 |
| 二 | 补偿误差值的90% | 不补偿 |
| 三 | 不补偿 | 补偿误差值的90% |
| 四 | 补偿误差值的90% | 补偿误差值的90% |
| [1] | 李杰,谢福贵,刘辛军,等.五轴数控机床空间定位精度 改善方法研究现状[J].机械工程学报,2017,53(7):113-128. |
| LI Jie, XIE Fugui, LIU Xinjun, et al.Analysis on the Research Status of Volumetric Positioning Accuracy Improvement Methods for Five-axis NC Machine Tools[J].Journal of Mechanical Engineering,2017,53(7):113-128. | |
| [2] | XING K, ACHICHE S, MAYER J.Five-axis Machine Tools Accuracy Condition Monitoring Based on |
| Volumetric Errors and Vector Similarity Measures[J].International Journal of Machine Tools and Manufacture,2019,138:80-93. | |
| [3] | SALTELLI A, ALEKSANKINA K, BECKER W, et al. Why so Many Published Sensitivity Analyses Are False: a Systematic Review of Sensitivity Analysis Practices[J]. Environmental Modelling & Software, 2019, 114: 29-39. |
| [4] | CUKIER R I, FORTUIN C M, SHULER K E, et al. Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients. I Theory[J]. The Journal of Chemical Physics, 1973, 59(8): 3873-3878. |
| [5] | MCKAY M D, BECKMAN R J, CONOVER W J. Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code[J]. Technometrics, 1979, 21(2): 239-245. |
| [6] | MORRIS M D. Factorial Sampling Plans for Preliminary Computational Experiments[J]. Technometrics, 1991, 33(2): 161-174. |
| [7] | SOBOL I M. Sensitivity Estimates for Nonlinear Mathematical Models[J]. Mathematical Modelling and Computational Experiments, 1993, 4: 407-414. |
| [8] | 李建福. 灵敏度分析方法及其在机械优化设计中的应用[D]. 烟台: 烟台大学, 2010. |
| LI Jianfu. Sensitivity Analysis Method and Its Application in Mechanical Optimization Design[D]. Yantai: Yantai University, 2010. | |
| [9] | SALTELLI A, TARANTO L A S, CHAN K P S. Aquantitative Model-independent Method for Global Sensitivity Analysis of Model Output[J]. Technometrics, 1999, 41(1): 39-56. |
| [10] | FU G Q, GONG H W, FU J Z, et al. Geometric Error Contribution Modeling and Sensitivity Evaluating for Each Axis of Five-axis Machine Tools Based on POE Theory and Transforming Differential Changes between Coordinate Frames[J]. International Journal of Machine Tools and Manufacture, 2019, 147: 103455. |
| [11] | ZHANG Z L, CAI L G, CHENG Q, et al. A Geometric Error Budget Method to Improve Machining Accuracy Reliability of Multi-axis Machine Tools[J]. Journal of Intelligent Manufacturing, 2019, 30:495-519. |
| [12] | TAN Z, LIAO Y H, JIANG J, et al. A Method of Sensitivity Analysis and Precision Prediction for Geometric Errors of Five-axis Machine Tools Based on Multi-body System Theory[J]. International Journal of Advanced Manufacturing Technology, 2022, 123:3497-3512. |
| [13] | 王培桐,范晋伟,任行飞,等.一种新的机床位置误差灵 敏度分析方法[J].仪器仪表学报, 2022, 43(12): 129-138. |
| WANG Peitong, FAN Jinwei, REN Xingfei, et al.A Novel Sensitivity Analysis Method for Machine Tool Error[J].Chinese Journal of Scientific Instrument, 2022, 43(12): 129-138. | |
| [14] | ZHANG H A, XIANG S T, WU C, et al. Optimal Proportion Compensation Method of Key Geometric Errors for Five-axis MachineTools Considering Multiple-direction Coupling Effects[J]. Journal of Manufacturing Processes, 2024, 110: 447-461. |
| [15] | DAI Y, LI Y, LI Z L, et al. Temperature Measurement Point Optimization and Experimental Research for Bi-rotary Milling Head of Five-axis CNC Machine Tool[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121: 309-322. |
| [16] | 范晋伟,陈凯,潘日,等.数控精密立式磨床空间误差建 模及溯源分析[J].北京工业大学学报, 2024, 50(8): 905-913. |
| FAN Jinwei, CHEN Kai, PAN Ri, et al.Spatial Error Modeling and Traceability Analysis of CNC Precision Vertical Grinder[J]. Journal of Beijing University of Technology, 2024, 50(8): 905-913. | |
| [17] | 卢成伟,钱博增,王慧敏,等.工件分特征下的五轴数控 机床关键几何误差分析与补偿方法[J].中国机械工程,2022,33(14):1646-1653. |
| LU Chengwei, QIAN Bozeng, WANG Huimin, et al.Key Geometric Error Analysis and Compensation Method of Five-axis CNC Machine Tools under Workpiece Feature Decomposition[J]. China Mechanical Engineering,2022,33(14):1646-1653. | |
| [18] | 陶浩浩,陈丰,李同杰,等.一种基于新灵敏度指标的五 轴数控机床关键几何误差辨识方法[J].仪器仪表学报,2022,43(12):120-128. |
| TAO Haohao, CHEN Feng, LI Tongjie, et al.A Key Geometric Error Identification Method for Five-axis NC Machine Tool Based on New Sensitivity Index[J]. Chinese Journal of Scientific Instrument,2022,43(12):120-128. | |
| [19] | 李晴朝.五轴数控机床空间误差检测、补偿与动态误 差控制方法研究[D].成都:电子科技大学, 2021. |
| LI qingzhao. Study on Volumetric Error Measurement, Compensation and Dynamic Error Control of Five-axis CNC Machine Tools[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
| [20] | 刘焕牢,周恒宇,张文斌,等.一种基于改进九线法的数 控机床几何误差辨识方法及装置:CN202311651145. 3 [P]. 2024-01-05. |
| LIU Huanlao, ZHOU Hengyu, ZHANG Wenbin, et al. A Method and Device for Recognizing Geometric Errors of CNC Machine Tools Based on Improved Nine-line Method:CN202311651145.3 [P]. 2024-01-05. | |
| [21] | 张文斌,刘焕牢,王宇林,等.双转台五轴数控机床旋转 轴位置无关几何误差辨识[J].中国机械工程,2024,35(6):1023-1033. |
| ZHANG Wenbin, LIU Huanlao, WANG Yulin, et al. Identification of Position-independent Geometric Errors in Rotary Axes of Five-axis Machine Tools with Double Rotary Tables[J]. China Mechanical Engineering, 2024, 35(6): 1023-1033. |
| [1] | Siqi LIU, Peitang WEI, Rui HU, Xuesong DU, Li LUO, Caichao ZHU, Pengliang ZHOU. Statistical Analysis of Planetary Roller Screw Thread Machining Errors and Comparative Study at Home and Abroad [J]. China Mechanical Engineering, 2025, 36(08): 1713-1727. |
| [2] | GUO Feiyan1, ZHANG Hui2, SONG Changjie1, ZHANG Shuo1. Identification and Evaluation of Key Error Elements in Complex Composite Aviation Componts Assembly Driven by Mechanism and Data Model Fusion [J]. China Mechanical Engineering, 2025, 36(07): 1530-1543. |
| [3] | SHEN Yehu1, LI Huan1, ZHANG Daqing1, MIAO Yang1, ZHAO Chong2, JIANG Quansheng1. Visual Loop Detection Method with Sensitivity Analysis of Network Weight Parameters [J]. China Mechanical Engineering, 2024, 35(07): 1212-1221. |
| [4] | CHEN Junxiang, KONG Xiangdong, XU Kelong, AI Chao, . Comprehensive Performance Optimization of High Pressure Threaded Plug-in Relief Valves [J]. China Mechanical Engineering, 2023, 34(24): 2909-2919,2926. |
| [5] | QU Xiaozhang, ZHANG Jiabei, ZHAI Fangzhi. Sensitivity Analysis and Optimization of High Speed Train Cooling Centrifugal Fan Performance [J]. China Mechanical Engineering, 2023, 34(20): 2504-2512. |
| [6] | LI Meng, WANG Shilong, MA Chi, XIA Changjiu. Identification of Key Errors for Large-sized Gear Hobbing Machines Based on Tooth Surface Posture-geometric Error Model [J]. China Mechanical Engineering, 2023, 34(05): 533-542. |
| [7] | CHEN Hao, GONG Mingde, ZHAO Dingxuan, ZHANG Wei, ZHANG Yue, HAO Chunyou, . Sensitivity Analysis and Adaptive Tracking Control of Electro-hydraulic Active Suspensions [J]. China Mechanical Engineering, 2023, 34(04): 481-489. |
| [8] | WU Hanlin, WEI Peitang, CAI Lei, HU Rui, LIU Huaiju, DU Xuesong, ZHU Caichao, LIU Lang. Optimization of Planetary Roller Screw Tolerance Matching Based on Machining Error Sensitivity Analysis and Fuzzy Analytic Hierarchy Processes [J]. China Mechanical Engineering, 2022, 33(22): 2693-2703. |
| [9] | LU Chengwei, QIAN Bozeng, WANG Huimin, XIANG Sitong. Key Geometric Error Analysis and Compensation Method of Five-axis CNC Machine Tools under Workpiece Feature Decomposition [J]. China Mechanical Engineering, 2022, 33(14): 1646-1653. |
| [10] | FU Guoqiang, RAO Yongjian, XIE Yunpeng, GAO Hongli, DENG Xiaolei. Error Sensitivity Analysis of Motion Axis for Five-axis CNC Machine Tools with Geometric Error Contribution [J]. China Mechanical Engineering, 2020, 31(13): 1518-1528. |
| [11] | HUANG Zhi, LIU Yongchao, DENG Tao, ZHOU Tao, ZHU Yun. A Method for Thermal Error Modeling of FAMT [J]. China Mechanical Engineering, 2020, 31(13): 1529-1538. |
| [12] | CHEN Long;ZHU Ying;XU Li;ZHANG Gaopeng. Isogeometric Optimization Method for Structural Shapes Based on Analysis of Weight Sensitivity [J]. China Mechanical Engineering, 2020, 31(11): 1306-1314. |
| [13] | LI Xi;YUAN Juntang;WANG Zhenhua;ZHANG Bo. Study on Deformation Control of Thin-walled Titanium Alloy Parts in Non-uniform Allowance Machining Based on Rayleigh-Ritz Method [J]. China Mechanical Engineering, 2020, 31(11): 1378-1385. |
| [14] | LYU Fengpeng;LI Chaoyang;HUANG Jian;CHEN Bingkui . Optimization Design of RV Reducer Turning Arm Bearings [J]. China Mechanical Engineering, 2020, 31(09): 1043-1048. |
| [15] | XU Huanwei;LI Mufeng;WANG Xin;HU Cong;ZHANG Suichuan. Robust Design of Interval Uncertainty Based on Sensitivity Analysis [J]. China Mechanical Engineering, 2019, 30(13): 1545-1551. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||