China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 2829-2836.DOI: 10.3969/j.issn.1004-132X.2025.12.003
Yuan YUAN(
), Yichao BAI(
), Lidong ZHOU, Wenjun MENG, Miao WANG, Wenbin QU
Received:2024-11-15
Online:2025-12-25
Published:2025-12-31
Contact:
Yichao BAI
袁媛(
), 白一超(
), 周利东, 孟文俊, 王淼, 曲文斌
通讯作者:
白一超
作者简介:袁媛,女,1982年生,副教授。研究方向为物流装备及其系统设计。E-mail:2007061@tyust.edu.cn基金资助:CLC Number:
Yuan YUAN, Yichao BAI, Lidong ZHOU, Wenjun MENG, Miao WANG, Wenbin QU. Conveyor Belt Damages Detection Based on Improved YOLOv8 Algorithm[J]. China Mechanical Engineering, 2025, 36(12): 2829-2836.
袁媛, 白一超, 周利东, 孟文俊, 王淼, 曲文斌. 改进YOLOv8的输送带损伤检测方法[J]. 中国机械工程, 2025, 36(12): 2829-2836.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.12.003
| 配置名称 | 版本/ 参数 |
|---|---|
| 深度学习框架 | PyTorch 2.3.1+cu118 |
| 操作系统 | Windows 11 |
| CPU | Intel(R)Core(TM)i7-13650HX CPU@2.60GHz |
| GPU | NVIDIA GeForce GTX 4060Ti |
| CUDA | 12.4 |
| 编译器 | Python3.9.19 |
| 内存 | 24 GB |
Tab.1 Experimental environment for model training
| 配置名称 | 版本/ 参数 |
|---|---|
| 深度学习框架 | PyTorch 2.3.1+cu118 |
| 操作系统 | Windows 11 |
| CPU | Intel(R)Core(TM)i7-13650HX CPU@2.60GHz |
| GPU | NVIDIA GeForce GTX 4060Ti |
| CUDA | 12.4 |
| 编译器 | Python3.9.19 |
| 内存 | 24 GB |
| 模块类型 | 平均精度PA/% | 精 确 度P/% | 平均 精度 均值Pma/% | 计算量/GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| SPPF | 90.6 | 74.0 | 99.1 | 99.3 | 88 | 90.7 | 8.1 |
| SPP | 91.5 | 76.0 | 98.6 | 99.5 | 88.9 | 91.4 | 7.5 |
| Focal Modulation | 86.7 | 85.0 | 98.5 | 99.4 | 89.3 | 92.4 | 8.2 |
| Basicrfb | 88.3 | 82.7 | 98.8 | 99.5 | 91.6 | 92.3 | 7.6 |
| SimSPPF | 84.4 | 75.7 | 98.6 | 99.5 | 87.1 | 89.5 | 7.5 |
Tab.2 SPPF module optimization comparison
| 模块类型 | 平均精度PA/% | 精 确 度P/% | 平均 精度 均值Pma/% | 计算量/GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| SPPF | 90.6 | 74.0 | 99.1 | 99.3 | 88 | 90.7 | 8.1 |
| SPP | 91.5 | 76.0 | 98.6 | 99.5 | 88.9 | 91.4 | 7.5 |
| Focal Modulation | 86.7 | 85.0 | 98.5 | 99.4 | 89.3 | 92.4 | 8.2 |
| Basicrfb | 88.3 | 82.7 | 98.8 | 99.5 | 91.6 | 92.3 | 7.6 |
| SimSPPF | 84.4 | 75.7 | 98.6 | 99.5 | 87.1 | 89.5 | 7.5 |
| 模块类型 | 平均精度PA/% | 精 确 度P/% | 平均 精度 均值Pma/% | 计算量/GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| YOLOv8 | 90.6 | 74.0 | 99.1 | 99.3 | 88.0 | 90.7 | 8.1 |
| CBAM | 88.8 | 77.8 | 98.7 | 99.2 | 91.2 | 91.1 | 8.1 |
| COTA | 91.0 | 75.3 | 99.1 | 99.3 | 87.4 | 91.2 | 8.5 |
| Double attention | 85.2 | 82.6 | 97.1 | 99.5 | 87.5 | 91.1 | 8.1 |
| EMA | 88.2 | 81.1 | 98.7 | 99.5 | 86.7 | 91.9 | 8.1 |
Tab.3 Comparison of experimental results of attention mechanism
| 模块类型 | 平均精度PA/% | 精 确 度P/% | 平均 精度 均值Pma/% | 计算量/GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| YOLOv8 | 90.6 | 74.0 | 99.1 | 99.3 | 88.0 | 90.7 | 8.1 |
| CBAM | 88.8 | 77.8 | 98.7 | 99.2 | 91.2 | 91.1 | 8.1 |
| COTA | 91.0 | 75.3 | 99.1 | 99.3 | 87.4 | 91.2 | 8.5 |
| Double attention | 85.2 | 82.6 | 97.1 | 99.5 | 87.5 | 91.1 | 8.1 |
| EMA | 88.2 | 81.1 | 98.7 | 99.5 | 86.7 | 91.9 | 8.1 |
基础 网络 | 精确度P/% | 平均精度 均值Pma/% | 计算量/GFLOPS | ||||
|---|---|---|---|---|---|---|---|
| √ | × | × | × | × | 88.0 | 90.7 | 8.1 |
| √ | √ | × | × | × | 86.7 | 91.9 | 8.1 |
| √ | √ | √ | × | × | 88.6 | 92.0 | 8.1 |
| √ | √ | √ | √ | × | 88.6 | 93.1 | 8.2 |
| √ | √ | √ | √ | √ | 90.3 | 93.2 | 8.2 |
Table 4 Ablation results
基础 网络 | 精确度P/% | 平均精度 均值Pma/% | 计算量/GFLOPS | ||||
|---|---|---|---|---|---|---|---|
| √ | × | × | × | × | 88.0 | 90.7 | 8.1 |
| √ | √ | × | × | × | 86.7 | 91.9 | 8.1 |
| √ | √ | √ | × | × | 88.6 | 92.0 | 8.1 |
| √ | √ | √ | √ | × | 88.6 | 93.1 | 8.2 |
| √ | √ | √ | √ | √ | 90.3 | 93.2 | 8.2 |
| 算法 | 平均精度PA/% | 精 确 度 P/% | 平均 精度 均值 Pma/% | 计算量/ GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| YOLOV3-tiny | 71.1 | 78.7 | 92.3 | 99.3 | 81.8 | 85.3 | 18.9 |
| YOLOV5 | 86.3 | 79.3 | 98.2 | 99.3 | 88.3 | 90.8 | 7.1 |
| YOLOV6 | 78.6 | 82.6 | 98.6 | 99.5 | 85.2 | 89.8 | 11.8 |
| YOLOV8 | 90.6 | 74 | 99.1 | 99.3 | 88 | 90.7 | 8.1 |
| YOLOV8s | 89.6 | 79.9 | 97.2 | 99.5 | 90.6 | 91.5 | 28.4 |
| YOLOV9t | 83.9 | 83.3 | 99.5 | 99.5 | 86.2 | 91.6 | 7.6 |
| YOLOV9s | 92.5 | 78.2 | 99.5 | 99.5 | 91.7 | 92.4 | 26.7 |
| YOLOV10n | 87.2 | 77.2 | 97.5 | 98.1 | 87 | 90.0 | 8.2 |
| FDEP-YOLOv8 | 93.6 | 80.4 | 99.4 | 99.4 | 90.3 | 93.2 | 8.2 |
Table 5 Comparison results of mainstream algorithms
| 算法 | 平均精度PA/% | 精 确 度 P/% | 平均 精度 均值 Pma/% | 计算量/ GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| YOLOV3-tiny | 71.1 | 78.7 | 92.3 | 99.3 | 81.8 | 85.3 | 18.9 |
| YOLOV5 | 86.3 | 79.3 | 98.2 | 99.3 | 88.3 | 90.8 | 7.1 |
| YOLOV6 | 78.6 | 82.6 | 98.6 | 99.5 | 85.2 | 89.8 | 11.8 |
| YOLOV8 | 90.6 | 74 | 99.1 | 99.3 | 88 | 90.7 | 8.1 |
| YOLOV8s | 89.6 | 79.9 | 97.2 | 99.5 | 90.6 | 91.5 | 28.4 |
| YOLOV9t | 83.9 | 83.3 | 99.5 | 99.5 | 86.2 | 91.6 | 7.6 |
| YOLOV9s | 92.5 | 78.2 | 99.5 | 99.5 | 91.7 | 92.4 | 26.7 |
| YOLOV10n | 87.2 | 77.2 | 97.5 | 98.1 | 87 | 90.0 | 8.2 |
| FDEP-YOLOv8 | 93.6 | 80.4 | 99.4 | 99.4 | 90.3 | 93.2 | 8.2 |
| [1] | 张梦超,周满山,张媛,等.基于深度学习的矿用输送带损伤检测方法[J].工矿自动化,2021,47(6):51-56. |
| ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan,et al.Damage Detection Method for Mine Conveyor Belt Based on Deep Learning[J].Journal of Mine Automation,2021,47(6):51-56. | |
| [2] | 胡璟皓,高妍,张红娟,等.基于深度学习的带式输送机非煤异物识别方法[J].工矿自动化,2021,47(6):57-62. |
| HU Jinghao, GAO Yan, ZHANG Hongjuan,et al.Research on the Identification Method of Non-coal Foreign Object of Belt Conveyor Based on Deep Learning[J].Journal of Mine Automation,2021,47(6):57-62. | |
| [3] | ALVIARI L P, ANGGAMAWARTI M F, SANJIWANI Y, et al. Classification of Impact Damage on a Rubber-textile Conveyor Belt: a Review[J]. International Journal of Mechanical Engineering Technologies and Applications, 2020, 1(1): 21-27. |
| [4] | GUO X, LIU X, ZHOU H, et al. Belt Tear Detection for Coal Mining Conveyors[J]. Micromachines, 2022, 13(3): 449. |
| [5] | KOZLOWSKI T, WODECKI J, ZIMROZ R, et al. A Diagnostics of Conveyor Belt Splices[J]. Applied Sciences, 2020, 10(18): 6259. |
| [6] | 熊念强,文锋,李清,等.带式输送机胶带撕裂检测技术综述[J].煤炭工程,2022,54(7):79-85. |
| XIONG Nianqiang, WEN Feng, LI Qing,et al.Review on Detection Technology of Conveyor Belt Rip[J]. Coal Engineering,2022,54(7):79-85. | |
| [7] | 王以娜.基于视觉检测的皮带纵向撕裂检测关键技术研究[D]. 鞍山:辽宁科技大学,2020. |
| WANG Yina,Research on Key Technology of Belt Longitudinal Tear Detection Based on Visual Inspection[D].Anshan:University of Science and Technology Liaoning,2020. | |
| [8] | 陈希阳,李佳楠,张翼,等.基于神经网络的难选夹层磷矿石预分选理论研究[J].有色金属(选矿部分),2023 (6):125-131. |
| CHEN Xiyang, LI Jianan, ZHANG Yi,et al.Theoretical Study on Pre-separation of Phosphate Ore with Refractory Interlayer Based on Neural Network[J].Nonferrous Metals(Mineral Processing Section),2023 (6):125-131. | |
| [9] | 樊红卫,刘金鹏,曹现刚,等.低照度尘雾下煤、异物及输送带早期损伤多尺度目标智能检测方法[J].煤炭学报, 2024,49 ():1259-1270. |
| FAN Hongwei, LIU Jinpeng, CAO Xiangang,et al.Multi-scale Target Intelligent Detection Method for Coal,Foreign Object and Early Damage of Conveyor Belt Surface under Low Illumination and Dust Fog[J].Journal of China Coal Society, 2024,49 (S2):1259-1270. | |
| [10] | WANG G, YANG Z, SUN H, et al. AC-SNGAN: Multi-class Data Augmentation for Damage Detection of Conveyor Belt Surface Using Improved ACGAN[J]. Measurement, 2024, 224: 113814. |
| [11] | GUO X, LIU X, GARDONI P, et al. Machine Vision Based Damage Detection for Conveyor Belt Safety Using Fusion Knowledge Distillation[J]. Alexandria Engineering Journal, 2023, 71: 161-172. |
| [12] | ZHANG M, SHI H, ZHANG Y, et al. Deep Learning-based Damage Detection of Mining Conveyor Belt[J]. Measurement, 2021, 175: 109130. |
| [13] | 沈景轩,王贡献,孙晖,等.基于图像自适应增强YOLOv5的输送带纵向撕裂检测[J].仪表技术与传感器,2023(12):69-74. |
| SHEN Jingxuan, WANG Gongxian, SUN Hui, et al.Longitudinal Tear Detection Based on Image-adaptive Enhancement YOLOv5 for Conveyor Belt[J].Instrument Technique and Sensor,2023(12):69-74. | |
| [14] | 于庆,罗明华,向亮,等.基于改进YOLOv5的矿用输送带纵向撕裂检测方法[J].矿业安全与环保,2024,51(4):1-8. |
| YU Qing, LUO Minghua, XINAG Liang,et al.Longitudinal Tear Detection Method of Mine Conveyor Belt Based on Improved YOLOv5[J].Mining Safety & Environmental Protection,2024,51(4):1-8. | |
| [15] | 洪炎,汪磊,苏静明,等.基于改进YOLOv8的煤矿输送带异物检测[J].工矿自动化,2024,50(6):61-69. |
| HONG Yan, WANG Lei, SU Jingming,et al.Foreign Object Detection of Coal Mine Conveyor Belt Based on Improved YOLOv8[J].Journal of Mine Automation,2024,50(6):61-69. | |
| [16] | YANG J, LI C, DAI X, et al. Focal Modulation Networks[J]. Advances in Neural Information Processing Systems, 2022, 35: 4203-4217. |
| [17] | LIU W, LU H, FU H, et al. Learning to Upsample by Learning to Sample[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris :2023: 6027-6037. |
| [18] | OUYANG D, HE S, ZHANG G, et al. Efficient Multi-scale Attention Module with Cross-spatial Learning[C]∥ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).Greece: IEEE, 2023: 1-5. |
| [19] | LIU C, WANG K, LI Q, et al. Powerful-IoU: More Straightforward and Faster Bounding Box Regression Loss with a Nonmonotonic Focusing Mechanism[J]. Neural Networks, 2024, 170: 276-284. |
| [20] | 陈腾杰,李永安,张之好,等.基于改进YOLOv8n+DeepSORT的带式输送机异物检测及计数方法[J].工矿自动化,2024,50(8):91-98. |
| CHEN Tengjie, LI Yongan, ZHANG Zhihao, et al. Foreign Object Detection and Counting Method for Belt Conveyor Based on Improved YOLOv8n+DeepSORT[J].Journal of Mine Automation,2024,50(8):91-98. | |
| [21] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization[J]. International Journal of Computer Vision, 2020, 128: 336-359. |
| [1] | Hongchen WU, Xiaorong CHEN, Baiyang LI. Multi-threaded Semi-global Stereo Matching Method for Internal Inspection of Workpieces [J]. China Mechanical Engineering, 2025, 36(11): 2783-2791. |
| [2] | Jun WANG, Guibing GAO. A Method for Detecting Surface Defects on Wind Turbine Blades Based on Improved YOLOv5s [J]. China Mechanical Engineering, 2025, 36(09): 2108-2116. |
| [3] | LUO Liang1, 2, LANG Xiao1, ZU Guoqing2, ZHANG Nong1, YANG Lin3, SHEN Xiongwei4. A Cylinder Liner Defect Detection Method Based on Improved YOLOv8n [J]. China Mechanical Engineering, 2025, 36(05): 1054-1064. |
| [4] | HU Xinyu, LIU Xiyang, ZHANG Junwei, YAN Shuang, LI Yunxiang, YE Xuhui. Fast Focusing Method for Precision Vision Detection System Based on YOLOv5s [J]. China Mechanical Engineering, 2025, 36(04): 864-872. |
| [5] | ZHU Chuanjun1, LIANG Zeqi1, FU Qiang1, ZHANG Chaoyong2. Label Assignment Algorithm for Metal Defect Samples Based on Distance-awareness [J]. China Mechanical Engineering, 2024, 35(09): 1634-1641. |
| [6] | NA Yiming1, HU Chao1, QIU Yeyu2, LU Libing2, SONG Kai1. Three-dimensional Positioning Guidance of Automobile Doors Based on Machine Vision [J]. China Mechanical Engineering, 2024, 35(09): 1677-1687. |
| [7] | ZOU Junyi, LIU Chang, GUO Wenbin, YAN Yunbing, RAN Maoping. Research on Road Uneven Obstacle Recognition Method for Intelligent Vehicles [J]. China Mechanical Engineering, 2024, 35(06): 951-961. |
| [8] | MEI Jie, QIN Jiarui, CHEN Dingfang, CHEN Kun, . SLAM-based Underwater Image Enhanced Visual 3D Reconstruction Method [J]. China Mechanical Engineering, 2024, 35(02): 268-279. |
| [9] | SUN Jiale, LUO Chen, ZHOU Yijun, WANG Wei, ZHANG Gang. Calibration Parameter Optimization and Accuracy Evaluation of Complex Visual Measurement Systems [J]. China Mechanical Engineering, 2023, 34(14): 1741-1748,1755. |
| [10] | WEN Jiangtao, ZHANG Pengcheng, SUN Jiedi, LEI Ming. Unsupervised Transfer Learning with Residual Convolutional Autoencoder Networks for Bearing Fault Diagnosis [J]. China Mechanical Engineering, 2022, 33(14): 1707-1716. |
| [11] | CUI Haihua, XU Zhenlong, YANG Yapeng, MENG Yayun, WANG Baojun. A Circular Target Stability Detection Method Based on Deep Learning Image Super-resolution [J]. China Mechanical Engineering, 2021, 32(23): 2861-2867. |
| [12] | YI Huaian, ZHAO Xinjia, TANG Le, CHEN Yonglun. Vision Measurement Method for Ground Surface Roughness Based on Color Image Singular Value Entropy Index#br# [J]. China Mechanical Engineering, 2021, 32(13): 1577-1583. |
| [13] | ZHANG Fengfeng, ZHANG Xin, CHEN Long, SUN Lining, ZHAN Wei. Binocular Camera Calibration Based on BP Neural Network Optimized by Improved Genetic Algorithm#br# [J]. China Mechanical Engineering, 2021, 32(12): 1423-1431. |
| [14] | GUO Baosu;ZHUANG Jichao;ZHANG Qin;WU Fenghe. Color Difference Detection of Polycrystalline Wafers Based on Multi-component Convolution Neural Network [J]. China Mechanical Engineering, 2021, 32(03): 297-304. |
| [15] | TIAN Sukun1;DAI Ning1;YUAN Fulai1;SUN Yuchun2;YU Qing3;CHENG Xiaosheng1. Functional Occlusal Surface Morphology Design Method for Missing Teeth Based on CGAN [J]. China Mechanical Engineering, 2021, 32(03): 331-340. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||