China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (11): 2658-2664.DOI: 10.3969/j.issn.1004-132X.2025.11.022
Received:2025-06-05
Online:2025-11-25
Published:2025-12-09
Contact:
Yang LI
通讯作者:
李阳
作者简介:李阳*(通信作者),男,1987 年生,高级工程师。研究方向为机械加工。E-mail: 649885223@qq.com。CLC Number:
Yang LI, Hongyu WEI. Optimization and Experiments of Flow-guiding Structure of Cathode in Electrochemical Machining of Internal Splines[J]. China Mechanical Engineering, 2025, 36(11): 2658-2664.
李阳, 韦红余. 内花键电解整形阴极导流结构优化与试验[J]. 中国机械工程, 2025, 36(11): 2658-2664.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.11.022
| 齿数 | 模数/mm | 压力角/(°) | 齿形公差/ mm | 齿向公差/mm |
|---|---|---|---|---|
| 18 | 1 | 30 | 0.03 | 0.013 |
| 齿距累积公差/mm | 齿面粗糙度Ra/μm | 实际齿槽宽/mm | 齿根过渡圆弧/mm | |
| 0.039 | 1.6 | 1.64~1.71 | R0.2最小 |
Tab.1 Main geometric dimensions and precision requirements for splines
| 齿数 | 模数/mm | 压力角/(°) | 齿形公差/ mm | 齿向公差/mm |
|---|---|---|---|---|
| 18 | 1 | 30 | 0.03 | 0.013 |
| 齿距累积公差/mm | 齿面粗糙度Ra/μm | 实际齿槽宽/mm | 齿根过渡圆弧/mm | |
| 0.039 | 1.6 | 1.64~1.71 | R0.2最小 |
| 参数 | 数值 |
|---|---|
| 初始加工间隙/mm | 0.2 |
| 阴极进给速度/(mm·min-1) | 15 |
| 加工电压/V | 30 |
| 电解液温度/℃ | 25 |
| 电解液电导率/(S·m-1) | 8.1 |
| 电解液入口压力/MPa | 1.2 |
| 电解液出口压力/MPa | 0.2 |
Tab.2 Test parameters
| 参数 | 数值 |
|---|---|
| 初始加工间隙/mm | 0.2 |
| 阴极进给速度/(mm·min-1) | 15 |
| 加工电压/V | 30 |
| 电解液温度/℃ | 25 |
| 电解液电导率/(S·m-1) | 8.1 |
| 电解液入口压力/MPa | 1.2 |
| 电解液出口压力/MPa | 0.2 |
| 试件 | 粗糙度Ra实测值 |
|---|---|
| 无导流结构试件 | 1.1 |
| 进液导流结构试件 | 0.8 |
| 进出液导流结构试件 | 0.6 |
Tab.3 Surface roughness of specimens with different flow-guiding structures
| 试件 | 粗糙度Ra实测值 |
|---|---|
| 无导流结构试件 | 1.1 |
| 进液导流结构试件 | 0.8 |
| 进出液导流结构试件 | 0.6 |
| 测量项目 | 要求值 | 实测值 |
|---|---|---|
| 齿形误差/mm | 0.03 | 0.02 |
| 齿向误差/mm | 0.013 | 0.01 |
| 齿距累积误差/mm | 0.039 | 0.02 |
| 齿面粗糙度Ra/μm | 1.6 | 0.4 |
| 实际齿槽宽/mm | 1.64~1.71 | 1.68 |
| 齿根过渡圆弧/mm | R0.2最小 | R0.4 |
Tab.4 Test specimen machining measurement results
| 测量项目 | 要求值 | 实测值 |
|---|---|---|
| 齿形误差/mm | 0.03 | 0.02 |
| 齿向误差/mm | 0.013 | 0.01 |
| 齿距累积误差/mm | 0.039 | 0.02 |
| 齿面粗糙度Ra/μm | 1.6 | 0.4 |
| 实际齿槽宽/mm | 1.64~1.71 | 1.68 |
| 齿根过渡圆弧/mm | R0.2最小 | R0.4 |
| [1] | 余辉. 内花键电解加工阴极设计及流场分析和试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
| YU Hui. Cathode Design with Flow Filed Analysis and Experimental Study on ECM of Internal Spline[D]. Harbin: Harbin Institute of Technology, 2020. | |
| [2] | RAJURKAR K P, SUNDARAM M M, MALSHE A P. Review of Electrochemical and Electrodischarge Machining[J]. Procedia CIRP, 2013, 6: 13-26. |
| [3] | 蒋贵强, 徐静, 张楠. 钛合金喷注器微小孔电解加工应用[J]. 电加工与模具, 2021(): 55-59. |
| JIANG Guiqiang, XU Jing, ZHANG Nan. Application of Electrochemical Machining of Micro-holes in Titanium Alloy Injector[J]. Electromachining & Mould, 2021(S1): 55-59. | |
| [4] | 王清清. 交叉孔相贯处电解修型试验研究[D]. 南京: 南京农业大学, 2020. |
| WANG Qingqing. Experimental Study on Electrolytic Modification of Intersecting Hole[D]. Nanjing: Nanjing Agricultural University, 2020. | |
| [5] | 沈莫奇, 傅秀清, 康敏, 等. 小锥度锥形孔电解加工的试验研究[J]. 机械设计, 2019, 36(7): 7-13. |
| SHEN Moqi, FU Xiuqing, KANG Min, et al. Experimental Study on the Electrochemical Machining of Tapered Holes[J]. Journal of Machine Design, 2019, 36(7): 7-13. | |
| [6] | 张矿磊, 曲宁松, 朱栋, 等. 整体叶盘叶栅通道电解加工流场仿真研究[J]. 机械制造与自动化, 2016, 45(6): 98-101. |
| ZHANG Kuanglei, QU Ningsong, ZHU Dong, et al. Investigation on Flow Field of Cascade Passage in Electrochemical Machining of Blades[J]. Machine Building & Automation, 2016, 45(6): 98-101. | |
| [7] | 张晓博, 朱栋, 吴泽刚, 等. 扩压器套料电解加工叶片边缘流场优化研究[J]. 电加工与模具, 2021(): 51-54. |
| ZHANG Xiaobo, ZHU Dong, WU Zegang, et al. Flow Field Optimization of Trailing Edge in Electrochemical Trepanning Process of Diffuser[J]. Electromachining & Mould, 2021(S1): 51-54. | |
| [8] | YANG Feng, ZHANG Jian, ZHAO Shuang, et al. Analysis of Flow Field for Electrochemical Machining Deep Spiral Hole with Gradually Changing Groove Section[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(7): 3267-3275. |
| [9] | 朱顺康, 刘嘉, 朱荻. 发动机叶片电解加工等入流角流场设计与试验研究[J]. 电加工与模具, 2016(3): 27-32. |
| ZHU Shunkang, LIU Jia, ZHU Di. Design and Experimental Investigation on Flow Field with Equivalent Inflow Angles in ECM of Turbine Blades[J]. Electromachining & Mould, 2016(3): 27-32. | |
| [10] | LAUNDER B E. Lectures in Mathematical Models of Turbulence[M]. London: Academic Press, 1972. |
| [1] | HE Bin, ZHOU Xingyu, LU Hongyu, ZHANG Junfei, DING Kai, LI Qilin, LEI Weining. Study on Low Wear Machining Method of High Volume Fraction SiCp/Al Composite Materials by ECM-mechanical Combined Machining Processes Method [J]. China Mechanical Engineering, 2025, 36(04): 753-759. |
| [2] | YAN Dinghu, ZHAO Jianshe, ZHANG Changhao, GAO Weizheng, ZHU Yin, . Flow Field Design and Experimental Research of ECM of Array Spherical Groove Structures with Variable Cross-sections [J]. China Mechanical Engineering, 2023, 34(23): 2824-2831. |
| [3] | WANG Chen, ZHAO Jianshe, QIANG Zhiming, ZHANG Changhao, LIU Shihao, . Influences of Vibration Feed on Electrochemical Machining Flow Fields of Surface Microstructures [J]. China Mechanical Engineering, 2023, 34(10): 1191-1198. |
| [4] | HAN Zhao, FANG Xiaolong, ZHU Di. Experimental Study of WECM Trimming for Titanium-Aluminum Intermetallic Compounds [J]. China Mechanical Engineering, 2021, 32(23): 2808-2816. |
| [5] | WANG Yiyu, ZHAO Jianshe, GU Minkai, JI Tao. Flow Field Design and Process Stability in Electrochemical Machining of Involute Internal Splines#br# [J]. China Mechanical Engineering, 2021, 32(13): 1562-1570. |
| [6] | WANG Zhendong1,3;PANG Guibing1;XIN Kaikai2;FAN Shuangjiao1;DING Jinhua1;ZHENG Jianping3. Mathematical Modeling and Experimental Study on Two-step Electrochemical Machining of Thin-wall Long Pipes of Molybdenum [J]. China Mechanical Engineering, 2020, 31(04): 425-431. |
| [7] | WANG Feng1,2;ZHAO Jianshe1;LIU Dingming1;FAN Yantao1;TIAN Zongjun1. Experimental Research on Controllable Vibration Assisted ECM of Deep Narrow Grooves of Titanium Alloy [J]. China Mechanical Engineering, 2019, 30(20): 2395-2402. |
| [8] | XU Bo1,2;GAN Weimin1,2;HE Yafeng1,2;LI Wenjing3;WANG Xiangzhi1,2 . Cathode Design and Experimental Study of NC Electrochemical Boring Processes for Stepped Holes [J]. China Mechanical Engineering, 2019, 30(12): 1498-1506. |
| [9] | ZHOU Xiaochao1,2;CHEN Yuanlong1;HOU Tingbo1;WANG Zhuangzhuang1. Multi physics Coupling Simulation of ECM Based on Gas Liquid Two phase Flow Model [J]. China Mechanical Engineering, 2019, 30(10): 1135-1141. |
| [10] | PANG Guibing 1;XIN Kaikai 1;CAI Xiao1;JI Tian1;ZHANG Liping1;LIU Jiyu2;HAN Jiwan3. Modeling and Experimental Study of Inter-electrode Gaps in ECM for Planes of Floating Cathode with a Round Mouth [J]. China Mechanical Engineering, 2017, 28(22): 2655-2661. |
| [11] | Chen Yuanlong, Fang Ming, Pei Di, Chang Weijie. Multi-physics Coupling Simulation of ECM Processes for Compressor Blade [J]. China Mechanical Engineering, 2016, 27(22): 3087-3092. |
| [12] | Pang Guibing , Xu Wenji, Zhou Jinjin. Study on Electrochemical Mechanical Precision Finishing Technology [J]. China Mechanical Engineering, 2016, 27(19): 2589-2593,2601. |
| [13] | Liu Zexiang, Kang Min, Li Shusheng. Flour Field Simulation of Small Holes Machined by the RUECM [J]. China Mechanical Engineering, 2016, 27(06): 748-753. |
| [14] | Liu Yujie, Zhao Jianshe, Gan Weimin, Qi Lu. Experimental Research on Electrochemical Machining of Lightweight Stepped Hole Structure [J]. China Mechanical Engineering, 2015, 26(11): 1429-1433,1515. |
| [15] | Wan Neng, Du Ke, Gao Jingyu, Chen Tao. Electrochemical Machining Analysis of Aero-engine Blade Based on Isogeometric Method [J]. China Mechanical Engineering, 2015, 26(10): 1368-1373. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
