[1]陈冰, 罗良, 焦浩文, 等. 基于磨削痕迹仿真的磨削纹理生成机理[J]. 中国机械工程, 2021, 32(14):1677-1685.
CHEN Bing, LUO Liang, JIAO Haowen, et al. Mechanism of Grinding Texture Generation Based on Grinding Trace Simulation[J]. China Mechanical Engineering, 2021, 32(14):1677-1685.
[2]华希俊, 符永宏, 王霄, 等. 内燃机缸套激光珩磨技术及其性能试验研究[J]. 中国机械工程, 2007, 18(24):2989-2992.
HUA Xijun, FU Yonghong, WANG Xiao, et al. Research on Laser Honing Technology and Performance Test of Internal Combustion Engine Cylinder Liners[J]. China Mechanical Engineering, 2007, 18(24):2989-2992.
[3]GNER M, DANIEL M, BHRE D. Approach and Development of a Methodology for Machining of Shapes in Cylindrical Bores by Precision Honing[J]. Manufacturing Letters, 2022, 33:365-372.
[4]张农, 黄凯, 罗亮, 等. 基于机器视觉的发动机气缸壁珩磨角测量方法[J]. 电子测量技术, 2022, 45(16):123-129.
ZHANG Nong, HUANG Kai, LUO Liang, et al. Machine Vision Based Measurement Method for Honing Angle of Engine Cylinder Linear[J]. Electronic Measurement Technology, 2022, 45 (16):123-129.
[5]吕延军, 强程, 张永芳, 等. 基于GRNN的珩磨缸套表面3D粗糙度图像检测方法[J]. 中国表面工程, 2022, 35(6):116-127.
LYU Yanjun, QIANG Cheng, ZHANG Yongfang, et al. A 3D Roughness Image Detection Method for Honing Cylinder Liner Surface Based on GRNN[J]. China Surface Engineering, 2022, 35(6):116-127.
[6]BEYERER J, PUENTE L F. Detection of Defects in Groove Textures of Honed Surfaces[J]. International Journal of Machine Tools and Manufacture, 1997, 37(3):371-389.
[7]WANG L M. Analysis and Evaluation of Cylinder Bore Surfaces in Micrographs[D]. Karlsruhe:Karlsruhe Institute of Technology, 2013.
[8]LI J F, WEN Y, HE L H. SCConv:Spatial and Channel Reconstruction Convolution for Feature Redundancy[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, 2023:6153-6162.
[9]HUANG H L, CHEN Z, ZOU Y, et al. Channel Prior Convolutional Attention for Medical Image Segmentation[J]. Computers in Biology and Medicine, 2024, 178:108784.
[10]TONG Z, CHEN Y, XU Z, et al. Wise-IoU:Bounding Box Regression Loss with Dynamic Focusing Mechanism[EB/OL]. ArXiv, 2023:2301.10051. http:∥arxiv. org/abs/2301.10051.
[11]ZHANG Y F, REN W, ZHANG Z, et al. Focal and Efficient IOU Loss for Accurate Bounding Box Regression[J]. Neurocomputing, 2022, 506:146-157.
[12]GEVORGYAN Z. SIoU Loss:More Powerful Learning for Bounding Box Regression[EB/OL]. ArXiv, 2022:2205.12740. http:∥arxiv. org/abs/2205.12740.
[13]HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation Networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018:7132-7141.
[14]WOO S, PARK J, LEE J Y, et al. CBAM:Convolutional Block Attention Module[C]∥Computer Vision—ECCV 2018. Munich, 2018:3-19.
[15]REN S, HE K, GIRSHICK R B, et al. Faster R-CNN:towards Real-time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39:1137-1149.
[16]GE Z, LIU S, WANG F, et al. YOLOX:Exceeding YOLO Series in 2021[EB/OL]. ArXiv, 2021:2107.08430. http:∥arxiv. org/abs /2107.08430.
[17]LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single Shot MultiBox Detector[C]∥Computer Vision—ECCV 2016. Amsterdam, 2016:21-37.
[18]WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:Trainable Bag-of-freebies Sets New State-of-the-art for Real-time Object Detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, 2023:7464-7475.
|