中国机械工程 ›› 2025, Vol. 36 ›› Issue (05): 974-985.DOI: 10.3969/j.issn.1004-132X.2025.05.009

• 机械基础工程 • 上一篇    下一篇

一种考虑弱刚性关节传动链结构和柔性杆结构的机器人刚度辨识方法

郭万金1,2,3,4*;李儒1;王利斌1;郝钦磊1;曹雏清2;赵立军2,4   

  1. 1.长安大学道路施工技术与装备教育部重点实验室,西安,710064
    2.长三角哈特机器人产业技术研究院,芜湖,241007
    3.埃夫特智能机器人股份有限公司,芜湖,241060
    4.哈尔滨工业大学机器人技术与系统全国重点实验室,哈尔滨,150000

  • 出版日期:2025-05-25 发布日期:2025-06-24
  • 作者简介:郭万金*,男,1983年生,副教授、博士研究生导师。研究方向为工业机器人刚度辨识、刚度优化、工业机器人打磨主动柔顺控制。E-mail:guowanjin@chd.edu.cn。
  • 基金资助:
    国家自然科学基金(52275005);陕西省自然科学基础研究计划(2025JC-QYXQ-027);中央高校基本科研业务费专项资金(300102253201);中国博士后科学基金(2024M760002);安徽省博士后科研项目(2023B675,2022B627);芜湖市重点研发与成果转化项目(2023yf044)

A Robot Stiffness Identification Method Considering Weakly Rigid Joint Transmission Chain Structures and Flexible Rod Structures

GUO Wanjin1,2,3,4*;LI Ru1;WANG Libin1;HAO Qinlei1;CAO Chuqing2;ZHAO Lijun2,4   

  1. 1.Key Laboratory of Road Construction Technology and Equipment,Ministry of Education,
    Changan University,Xian,710064
    2.Yangtze River Delta HIT Robot Technology Research Institute,Wuhu,Anhui,241007
    3.EFORT Intelligent Robot Co.,Ltd.,Wuhu,Anhui,241060
    4.State Key Laboratory of Robotics and System,Harbin Institute of Technology,Harbin,150000

  • Online:2025-05-25 Published:2025-06-24

摘要: 为解决含有弱刚性关节传动链结构和柔性杆结构的3T2R型高灵巧性机器人的刚度辨识问题,提出一种机器人刚度辨识方法。分析机器人紧凑性和经济性复合式构型设计的结构特点及作业姿态调整高灵巧性的运动特点,构建机器人雅可比矩阵,并建立机器人末端变形模型,分析机器人弱刚性关节传动链结构和柔性杆结构对机器人末端变形的影响;考虑机器人弱刚性关节传动链结构和柔性杆结构的共同作用影响及机器人弱刚性大变形的结构特征,进行机器人关节刚度辨识,并对移动关节3进行变刚度建模。实验结果表明,所提方法比常规刚度辨识方法辨识出的机器人关节3、关节4和关节5的刚度分别增大了146.59%、30.18%和36.07%;在所选6组机器人位姿处末端综合变形实测值和理论计算值的误差率为4%~6%,验证了所提刚度辨识方法的有效性。

关键词: 刚度辨识, 弱刚性关节传动链, 柔性杆, 机器人末端变形, 高灵巧性机器人

Abstract: To solve the stiffness identification problem for a 3T2R highly dexterous robot with weakly rigid joint transmission chain structures and flexible rod structures, a robot stiffness identification method was proposed. Firstly, the structural characteristics of the compact and cost-effective hybrid robot configuration design and the motion characteristics for adjusting the high dexterity of operational postures were analyzed. The robot Jacobian matrix was constructed, and the end deformation model of the robot was established to analyze the influences of weakly rigid joint transmission chain structures and flexible rod structures on the robot end deformations. Then, considering the effects of weakly rigid joint transmission chain structures and flexible rod structures, along with the robotic structural characteristics of weak rigidity and large deformation, robot joint stiffness identification was carried out,and the variable stiffness modeling was completed for the mobile joint 3. Experimental results indicate that the proposed method increases the stiffness of joints 3, joint 4 and 5 by 146.59%, 30.18% and 36.07% respectively, compared to conventional stiffness identification methods. The error rates between the measured and theoretical calculation values of the overall end deformations are in 4%~6% at six selected robot poses. The capability of the proposed robot stiffness identification method was verified.

Key words: stiffness identification, weakly rigid joint transmission chain, flexible rod, robot end deformation, highly dexterous robot

中图分类号: