中国机械工程 ›› 2026, Vol. 37 ›› Issue (1): 83-91.DOI: 10.3969/j.issn.1004-132X.2026.01.010
收稿日期:2024-10-18
出版日期:2026-01-25
发布日期:2026-02-05
通讯作者:
史彦斌
作者简介:朱千业,男,1996年生,硕士研究生。研究方向为材料表面防护。发表论文2篇。E-mail: zhuqianye@nimte.ac.cn基金资助:
ZHU Qianye1(
), FENG Shangyu1,2, SHI Yanbin1(
), PU Jibin1
Received:2024-10-18
Online:2026-01-25
Published:2026-02-05
Contact:
SHI Yanbin
摘要:
采用磁控溅射技术制备了MoS2/Zn润滑薄膜,研究了原子氧MoS2薄膜摩擦磨损性能的影响规律。结果显示,Zn的掺入促使MoS2沿平行于(002)晶面的方向择优生长,薄膜结构致密有序,可有效抑制原子氧向薄膜内部侵蚀。转速2 r/min、MoS2靶电流1.6 A、Zn靶电流0.3 A的MoS2/Zn多层薄膜的摩擦因数为0.02、磨损率为1.9×10
中图分类号:
朱千业, 冯上郁, 史彦斌, 蒲吉斌. 真空原子氧辐照下MoS2/Zn薄膜的摩擦磨损性能[J]. 中国机械工程, 2026, 37(1): 83-91.
ZHU Qianye, FENG Shangyu, SHI Yanbin, PU Jibin. Friction and Wear Properties of MoS2/Zn Films under Vacuum Atomic Oxygen Irradiation[J]. China Mechanical Engineering, 2026, 37(1): 83-91.
| 薄膜 | 原子百分数/% | 粗糙度/nm | 厚度/μm | ||
|---|---|---|---|---|---|
| Mo | S | Zn | |||
| No.1 | 33..02 | 66.98 | 22.10 | 3.38 | |
| No.2 | 43.11 | 55.82 | 1.07 | 4.22 | 2.33 |
| No.3 | 34.84 | 59.54 | 5.62 | 2.42 | 2.42 |
| No.4 | 35.58 | 58.28 | 6.14 | 2.08 | 2.05 |
表1 薄膜的元素含量、厚度和表面粗糙度
Tab.1 The elemental composition, thickness, and surface roughness of the films
| 薄膜 | 原子百分数/% | 粗糙度/nm | 厚度/μm | ||
|---|---|---|---|---|---|
| Mo | S | Zn | |||
| No.1 | 33..02 | 66.98 | 22.10 | 3.38 | |
| No.2 | 43.11 | 55.82 | 1.07 | 4.22 | 2.33 |
| No.3 | 34.84 | 59.54 | 5.62 | 2.42 | 2.42 |
| No.4 | 35.58 | 58.28 | 6.14 | 2.08 | 2.05 |
图10 原子氧辐照前后4号薄膜磨痕和磨斑标记处(在图9d中标记)的拉曼光谱及磨斑EDS图像
Fig.10 Raman spectra and EDS images of the wear scars and wear tracks(marked locations in Fig. 9d) on the No.4 film before and after atomic oxygen irradiation
| [1] | 蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报, 2014, 34(1): 93-112. |
| PU Jibin, WANG Liping, XUE Qunji. Progress of Tribology of Graphene and Graphene-based Composite Lubricating Materials[J]. Tribology, 2014, 34(1): 93-112. | |
| [2] | 范昕, 任思明, 王海新, 等. MoS2/WS2复合薄膜的环境适应性和摩擦学性能[J]. 中国机械工程, 2022, 33(12): 1468-1476. |
| FAN Xin, REN Siming, WANG Haixin, et al. Environmental Adaptability and Tribological Properties of MoS2/WS2 Composite Films[J]. China Mechanical Engineering, 2022, 33(12): 1468-1476. | |
| [3] | AHMAD K, SHINDE M A, KIM H. Molybdenum Disulfide/Reduced Graphene Oxide: Progress in Synthesis and Electro-catalytic Properties for Electrochemical Sensing and Dye Sensitized Solar Cells[J]. Microchemical Journal, 2021, 169: 106583. |
| [4] | JIANG Y, SRIDHAR S, LIU Z, et al. The Interplay of Intra- and Inter-layer Interactions in Bending Rigidity of Ultrathin 2D Materials[J]. Applied Physics Letters, 2023, 122(15): 153101. |
| [5] | OHMAE N. Influence of Atomic Oxygen on Space Tribology in a Low Earth Orbit[J]. Wear, 1993, 168(1/2): 99-103. |
| [6] | Mei LYU, WANG Qihua, WANG Tingmei, et al. Effects of Atomic Oxygen Exposure on the Tribological Performance of ZrO2-reinforced Polyimide Nanocomposites for Low Earth Orbit Space Applications[J]. Composites Part B: Engineering, 2015, 77: 215-222. |
| [7] | SHIN K B, KIM C G, HONG C, et al. Prediction of Failure Thermal Cycles in Graphite/Epoxy Composite Materials under Simulated Low Earth Orbit Environments[J]. Composites Part B: Engineering, 2000, 31(3): 223-235. |
| [8] | LIU Guanghai, CHENG Laifei, LUAN Xingang. Radiation Damage Behavior of Carbon/Carbon Composite in Low Earth Orbit Environment[J]. Ceramics International, 2019, 45(13): 16088-16096. |
| [9] | FAN Hengzhong, HU Tianchang, WAN Hongqi, et al. Surface Composition-Lubrication Design of Al2O3/Ni Laminated Composites—Part II: Tribological Behavior of LaF3-doped MoS2 Composite Coating in a Water Environment[J]. Tribology International, 2016, 96: 258-268. |
| [10] | HAN Cuihong, LI Guolu, MA Guozheng, et al. Research on Atomic Oxygen Erosion Influence of Structural Damage and Tribological Properties of Mo/MoS2-Pb-PBS Thin Film[J]. Materials, 2022, 15(5): 1851. |
| [11] | FREY G L, TENNE R, MATTHEWS M J, et al. Raman and Resonance Raman Investigation of MoS2 Nanoparticles[J]. Physical Review B, 1999, 60(4): 2883-2892. |
| [12] | ZHU Qianye, LIU Xi, WANG Yunfeng, et al. Effect of Vacuum Atomic Oxygen Irradiation on Tribological Properties of MoS2/WC Multilayer Films[J]. Ceramics International, 2024, 50(14): 25103-25114. |
| [13] | GAO Zhenrong, NIE Weiming, WANG Haixin, et al. Enhancing Mechanical Performance and High-temperature Lubrication Enabled by MoS2/WB2 Nanolayered Films[J]. Composites Part B: Engineering, 2024, 275: 111350. |
| [14] | CROSS J B, MARTIN J A, POPE L E, et al. Atomic Oxygen-MoS2 Chemical Interactions[J]. Surface and Coatings Technology, 1990, 42(1): 41-48. |
| [15] | TAGAWA M, YOKOTA K, MATSUMOTO K, et al. Space Environmental Effects on MoS2 and Diamond-like Carbon Lubricating Films: Atomic Oxygen-induced Erosion and Its Effect on Tribological Properties[J]. Surface and Coatings Technology, 2007, 202(4/5/6/7): 1003-1010. |
| [16] | GAO Xiaoming, HU Ming, FU Yanlong, et al. MoS2-Sb2O3 Film Exhibiting Better Oxidation-resistance in Atomic Oxygen Environment[J]. Materials Letters, 2018, 219: 212-215. |
| [17] | FAN Xin, SHI Yanbin, CUI Mingjun, et al. MoS2/WS2 Nanosheet-based Composite Films Irradiated by Atomic Oxygen: Implications for Lubrication in Space[J]. ACS Applied Nano Materials, 2021, 4(10): 10307-10320. |
| [18] | GAO Xiaoming, FU Yanlong, JIANG Dong, et al. Constructing WS2/MoS2 Nano-scale Multilayer Film and Understanding Its Positive Response to Space Environment[J]. Surface and Coatings Technology, 2018, 353: 8-17. |
| [19] | JIANG Yun, ZHANG Wenjing, MI Xujun, et al. Antibacterial Property, Corrosion and Discoloration Resistance of Pure Copper Containing Zn or Ni[J]. Rare Metals, 2022, 41(12): 4041-4046. |
| [20] | SONG M, KIM H, LEE S. Effect of a Zn Interlayer on the Adhesion Strength and Corrosion Resistance of Zn–Mg Coated TRIP Steel[J]. ISIJ International, 2019, 59(6): 1113-1118. |
| [21] | GAO Kaixiong, WANG Yongfu, ZHANG Bin, et al. Effect of Vacuum Atomic Oxygen Irradiation on the Tribological Properties of Fullerene-like Carbon and MoS2 Films[J]. Tribology International, 2022, 170: 107499. |
| [22] | HU Ming, GAO Xiaoming, SUN Jiayi, et al. The Effects of Nanoscaled Amorphous Si and SiNx Protective Layers on the Atomic Oxygen Resistant and Tribological Properties of Ag Film[J]. Applied Surface Science, 2012, 258(15): 5683-5688. |
| [23] | ZHANG Wen, YI Min, SHEN Zhigang, et al. Graphene-reinforced Epoxy Resin with Enhanced Atomic Oxygen Erosion Resistance[J]. Journal of Materials Science, 2013, 48(6): 2416-2423. |
| [24] | DENG Wen, ZHAO Xiaoqin, AN Yulong, et al. Improvement of Tribological Properties of As-sprayed 8YSZ Coatings by In-situ Synthesis C/MoS2 Composite Lubricant[J]. Tribology International, 2018, 128: 260-270. |
| [25] | REN S, CUI M, MARTINI A, et al. Macroscale Superlubricity Enabled by Rationally Designed MoS2-based Superlattice Films[J]. Cell Reports Physical Science, 2023, 4(5): 101390. |
| [26] | YANG Xing, LI Ruiyun, WANG Yongfu, et al. Tunable, Wide-temperature, and Macroscale Superlubricity Enabled by Nanoscale van Der Waals Heterojunction-to-homojunction Transformation[J]. Advanced Materials, 2023, 35(39): e2303580. |
| [27] | REN Siming, CAO Wentao, CUI Mingjun, et al. Environmentally Adaptive Lubrication Enabled by Gradient Structure Design of TiN-MoS2/Ti[J]. Surface and Coatings Technology, 2023, 458: 129317. |
| [28] | MBAM S O, GOU X. Interface Crack Growth Rate and Fatigue Life of Multilayer-coated Conductor Tapes[J]. Engineering Fracture Mechanics, 2020, 228: 106910. |
| [29] | PAUSCHITZ A, ROY M. Mechanical and Friction Properties of Mo-Se-C Film at Low Load[J]. Surface and Coatings Technology, 2021, 405: 126730. |
| [30] | ZHANG Rui, QIAO Li, ZHANG Hong, et al. Influence of Au2+ Ions Irradiation on the Structure and Wear Resistance of Amorphous MoS2 Films[J]. Applied Surface Science, 2022, 583: 152497. |
| [31] | XIA Ming, LI Bo, YIN Kuibo, et al. Spectroscopic Signatures of AA' and AB Stacking of Chemical Vapor Deposited Bilayer MoS2 [J]. ACS Nano, 2015, 9(12): 12246-12254. |
| [32] | CHAKRABORTY B, MATTE H S S R, SOOD A K, et al. Layer-dependent Resonant Raman Scattering of a Few Layer MoS2 [J]. Journal of Raman Spectroscopy, 2013, 44(1): 92-96. |
| [33] | 胡汉军, 张凯锋, 周晖, 等. 原子氧对非平衡磁控溅射MoS2-Ti复合薄膜真空摩擦学性能的影响[J]. 摩擦学学报, 2021, 41(5): 627-635. |
| HU Hanjun, ZHANG Kaifeng, ZHOU Hui, et al. Influence of Atomic Oxygen on the Vacuum Tribological Performance of MoS2-Ti Composite Films Deposited by Unbalanced Magnetron Sputtering[J]. Tribology, 2021, 41(5): 627-635. | |
| [34] | ZHANG Haijing, REN Siming, PU Jibin, et al. Barrier Mechanism of Multilayers Graphene Coated Copper Against Atomic Oxygen Irradiation[J]. Applied Surface Science, 2018, 444: 28-35. |
| [35] | CHENG Li, SHI Yanbin, HAO Yu, et al. Multilayer Boron Nitride Nanofilm as an Effective Barrier for Atomic Oxygen Irradiation[J]. Applied Surface Science, 2020, 504: 144394. |
| [36] | FU Yanlong, JIANG Dong, WANG Desheng, et al. Tribological Performance of MoS2-WS2 Composite Film under the Atomic Oxygen Irradiation Conditions[J]. Materials, 2020, 13(6): 1407. |
| [1] | 李迎春1,2;程蓓1;邱明1,2;谷守旭1;范恒华1. 不同石墨烯添加量下MoS2基复合涂层的摩擦磨损及耐腐蚀性能[J]. 中国机械工程, 2020, 31(20): 2437-2444. |
| [2] | 李迎春1,2;邹春生1;邱明1;庞晓旭1;程蓓1. 乏油环境下不同掺杂GLC膜的摩擦学行为[J]. 中国机械工程, 2019, 30(20): 2431-2438. |
| [3] | 崔云先;胡晓勇;薛帅毅;刘义;牟瑜. 高速动车组轴温测量用特种结构薄膜传感器的研制[J]. 中国机械工程, 2018, 29(01): 63-69. |
| [4] | 贾贵西1, 常家东1, 李言2, 袁启龙2. 基于CrCN复合镀层钢球轴承的性能可靠性研究[J]. 中国机械工程, 2013, 24(10): 1302-1305. |
| [5] | 陈凡燕, 凤仪, 杨茜婷, 张学斌. Ag-G-MoS2复合材料在不同气氛下的摩擦磨损性能研究 [J]. 中国机械工程, 2012, 23(5): 537-542. |
| [6] | 贾贵西, 李言, 袁启龙, 崔凤奎. 磁控溅射制备Cr7C3多层复合镀层及其耐磨性能 [J]. 中国机械工程, 2011, 22(3): 363-366. |
| [7] | 王振林;杨惠;杨栋华;;. 镁合金磁控溅射镀铝耐蚀防护层研究[J]. J4, 2008, 19(8): 0-1007. |
| [8] | 赵金龙;邓建新;颜培;. MoS2/Zr复合涂层高速钢刀具的切削性能研究[J]. J4, 2008, 19(21): 0-2524. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||