中国机械工程 ›› 2026, Vol. 37 ›› Issue (1): 184-191.DOI: 10.3969/j.issn.1004-132X.2026.01.019

• 智能制造 • 上一篇    

基于多源传感信息融合的智能刀柄及系统的设计

高远1(), 吴琦炜2, 宋阳2, 渠达2,3,4()   

  1. 1.航天材料及工艺研究所, 北京, 100076
    2.重庆理工大学机械工程学院, 重庆, 400054
    3.重庆理工大学时栅传感及先进检测技术重庆市重点实验室, 重庆, 400054
    4.重庆理工大学机械检测技术与装备教育部工程研究中心, 重庆, 400054
  • 收稿日期:2023-09-14 修回日期:2025-11-04 出版日期:2026-01-25 发布日期:2026-02-05
  • 通讯作者: 渠达
  • 作者简介:高远,男,1990年生,博士研究生。研究方向为先进制造技术与智能装备。E-mail:zzgaoyuan@163.com
    渠达*(通信作者),男,1987年生,博士、副教授、博士研究生导师。研究方向为先进制造技术与智能装备。发表论文30余篇。E-mail:qd007@cqut.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFB2010500);重庆市自然科学基金(2022NSCQMSX2038)

Design of Smart Tool Holders and Systems Based on Multi-sensor Information Fusion

GAO Yuan1(), WU Qiwei2, SONG Yang2, QU Da2,3,4()   

  1. 1.Aerospace Research Institute of Materials & Processing Technology,Beijing,100076
    2.College of Mechanical Engineering,Chongqing University of Technology,Chongqing,400054
    3.Engineering Research Center of Mechanical Testing Technology and Equipment (Ministry of Education),Chongqing University of Technology,Chongqing,400054
    4.Chongqing Key Laboratory of Time Grating Sensing and Advanced Testing Technology,Chongqing University of Technology,Chongqing,400054
  • Received:2023-09-14 Revised:2025-11-04 Online:2026-01-25 Published:2026-02-05
  • Contact: QU Da

摘要:

为有效监测加工过程中的物理特征,准确判断异常工况,优化加工工艺,设计了基于多源传感信息融合的智能刀柄及系统。基于力敏感元件、刀柄结构模态与刀柄振动等有限元分析,构建了多源传感智能刀柄系统;结合温度传递的时间序列神经网络建模等方法,实现了对切削力、振动和刀尖切削温度的在线监测。测试结果表明,系统对力的分辨力约为21.1mN,刀尖瞬态温度预测相对误差小于2.5%,对不同物理量具有良好的监测能力。同时,基于对加速度与力的分析,提出的刀具异常碰撞预警概率判断方法可提高刀具切入工件瞬间正常碰撞的判断准确率。

关键词: 智能刀柄, 切削力, 切削热, 模态分析, 异常预警

Abstract:

In order to effectively monitor the physical characteristics in machining processes, accurately determine the abnormal machining conditions, and optimize the machining processes, a self-developed multi-source information fusion-based smart tool holder and system was introduced. Based on finite element analysis of force-sensitive components, structure modals and vibrations of tool holders, a system for multi-source sensing smart tool holders was constructed. Combined with methods such as time series neural network modeling of temperature transfer, the online monitoring of cutting forces, vibrations and tool tip cutting temperature was achieved. Test results show that the system reaches a force resolution of approximately 21.1 mN and a relative error of less than 2.5% in predicting transient temperatures of the tool tips, validating the good monitoring capabilities for various physical quantities. Meanwhile, based on the analysis of the characteristics of dynamical physical quantities such as acceleration and force, a probabilistic judgment method for the early warning of abnormal tool collisions was proposed, which may improve the accuracy of judging the normal collision when the tool cuts into the workpiece.

Key words: smart tool holder, cutting force, cutting heat, modal analysis, abnormal warning

中图分类号: