中国机械工程 ›› 2026, Vol. 37 ›› Issue (1): 174-183.DOI: 10.3969/j.issn.1004-132X.2026.01.018

• 智能制造 • 上一篇    

基于端到端深度学习模型TOPO-U型网的结构拓扑优化方法

王浩1,2(), 罗浩东3, 施亚中4, 王立文5(), 张威5, 王忠6   

  1. 1.中国民航大学安全科学与工程学院, 天津, 300300
    2.中国民航大学工程技术训练中心, 天津, 300300
    3.中国民航大学航空工程学院, 天津, 300300
    4.北京飞机维修工程有限公司西南航线中心, 成都, 610000
    5.中国民航大学科技创新研究院, 天津, 300300
    6.中国航发成都发动机有限公司, 成都, 610500
  • 收稿日期:2024-11-20 出版日期:2026-01-25 发布日期:2026-02-05
  • 通讯作者: 王立文
  • 作者简介:王浩,男,1985年生,硕士研究生。研究方向为航空器智慧维修、增材制件结构拓扑优化。发表论文5篇。E-mail: wanghao@cauc.edu.cn
    王立文*(通信作者),男,1963年生,研究员、博士研究生导师。研究方向为机场工程自动化、机场地面特种设备。发表论文80余篇。E-mail: hbgdwh@126.com.
  • 基金资助:
    国家自然科学基金(U2133202);四川省重大科技专项(2021ZDZX0001);中央高校基本科研业务费专项资金(XJ2024002201)

A Topology Optimization Method Based on End-to-end Deep Learning Framework TOPO-U-Net

WANG Hao1,2(), LUO Haodong3, SHI Yazhong4, WANG Liwen5(), ZHANG Wei5, WANG Zhong6   

  1. 1.College of Safety Science and Engineering,Civil Aviation University of China,Tianjin,300300
    2.ETTC,Civil Aviation University of China,Tianjin,300300
    3.College of Aeronautical Engineering,Civil Aviation University of China,Tianjin,300300
    4.Southwest China Line Center,Aircraft Maintenance and Engineering Corporation,Chengdu,610000
    5.Institute of Technology and Innovation,Civil Aviation University of China,Tianjin,300300
    6.AECC Chengdu Engine Co. ,Ltd. ,Chengdu,610500
  • Received:2024-11-20 Online:2026-01-25 Published:2026-02-05
  • Contact: WANG Liwen

摘要:

针对结构拓扑优化中的“灰度单元”问题和“计算成本”挑战,提出一种基于端到端深度学习模型TOPO-U-Net的结构拓扑优化方法,该模型包括高低阶特征提取模块、深度可分卷积、组归一化,并设计了一种基于中间密度单元偏移函数的评价方法。实验结果表明,所提模型的中间密度偏移率达到85.42%,平均优化计算时间仅为固体各向同性材料惩罚模型方法的1%,显著减少了“灰度单元”数量,提高了设计的可制造性和结构拓扑优化的效率。

关键词: 固体各向同性材料惩罚模型, 深度学习, 拓扑优化, U型网络

Abstract:

To address the problems such as “grey elements” and “computational cost” in structural topology optimization, an end-to-end deep learning model TOPO-U-Net was proposed. The model integrated high and low feature extraction modules, depth separable convolution, and group normalization. In addition, an evaluation method was designed based on intermediate density element deviation function. Experiments show that the intermediate density deviation rate of the proposed model reaches 85.42%. And, the average optimization computation time is as 1% of that required by the SIMP method, which may significantly reduce the number of “grey elements”, improve the manufacturability of complex structures and computational efficiency of topology optimization.

Key words: solid isotropic material with penalization(SIMP), deep learning, topology optimization, U-Net

中图分类号: