中国机械工程 ›› 2025, Vol. 36 ›› Issue (12): 2936-2943.DOI: 10.3969/j.issn.1004-132X.2025.12.016
• 智能制造 • 上一篇
收稿日期:2025-01-18
出版日期:2025-12-25
发布日期:2025-12-31
通讯作者:
曹华军
作者简介:包振科,男,2000年生,硕士研究生。研究方向为铣削加工刀具磨损状态监测。E-mail:2698566059@qq.com基金资助:
Zhenke BAO(
), Huajun CAO(
), Fengze QIN, Zhixiang CHEN, Guibao TAO
Received:2025-01-18
Online:2025-12-25
Published:2025-12-31
Contact:
Huajun CAO
摘要:
为了提高加工过程中刀具磨损监测精度,提出一种基于改进的鲸鱼优化算法(IWOA)和改进的高效通道注意力机制(IECA)的双向长短期记忆网络(BiLSTM)模型。通过对PHM2010刀具磨损数据进行片段截取并提取多域特征,再结合皮尔逊系数筛选得到刀具磨损强相关特征。输入特征训练模型,模型中BiLSTM模块能有效捕捉数据中的时序特征;IECA注意力机制模块能提高特征表征能力;IWOA模块能优化模型超参数,进一步提高模型精度。最后基于三折交叉验证测试模型性能,并与其他多个模型进行对比,结果表明,IWOA-IECA-BiLSTM刀具磨损监测模型在多数测试集上具有最佳表现,在C1、C4、C6三个测试集上均方根误差分别低至6.5、12.46、9.28。
中图分类号:
包振科, 曹华军, 秦逢泽, 陈志祥, 陶桂宝. 基于IWOA-IECA-BiLSTM模型的刀具磨损监测[J]. 中国机械工程, 2025, 36(12): 2936-2943.
Zhenke BAO, Huajun CAO, Fengze QIN, Zhixiang CHEN, Guibao TAO. Tool Wear Monitoring Based on IWOA-IECA-BiLSTM Model[J]. China Mechanical Engineering, 2025, 36(12): 2936-2943.
| 函数名 | 维度 | 范围 | 最优值 |
|---|---|---|---|
| F1(Sphere) | 30/10/200 | [-100, 100] | 0 |
| F2(Schwefel 2.22) | 30/10/200 | [-10, 10] | 0 |
| F3(Schwefel 1.2) | 30/10/200 | [-100, 100] | 0 |
| F4(Schwefel 2.21) | 30/10/200 | [-100, 100] | 0 |
| F5(Rastrigin) | 30/10/200 | [-5.12, 5/12] | 0 |
| F6(Griewwank) | 30/10/200 | [-600, 600] | 0 |
| F7(Penalized) | 30 | [-50, 50] | 0 |
| F8(Six-Hump camel) | 2 | [-5, 5] | -1.0316 |
| F9(Beale) | 2 | [-4.5, 4.5] | 0 |
| F10(Cross-in-tray) | 2 | [-10, 10] | -2.0626 |
表1 测试基准函数
Tab.1 Test benchmark functions
| 函数名 | 维度 | 范围 | 最优值 |
|---|---|---|---|
| F1(Sphere) | 30/10/200 | [-100, 100] | 0 |
| F2(Schwefel 2.22) | 30/10/200 | [-10, 10] | 0 |
| F3(Schwefel 1.2) | 30/10/200 | [-100, 100] | 0 |
| F4(Schwefel 2.21) | 30/10/200 | [-100, 100] | 0 |
| F5(Rastrigin) | 30/10/200 | [-5.12, 5/12] | 0 |
| F6(Griewwank) | 30/10/200 | [-600, 600] | 0 |
| F7(Penalized) | 30 | [-50, 50] | 0 |
| F8(Six-Hump camel) | 2 | [-5, 5] | -1.0316 |
| F9(Beale) | 2 | [-4.5, 4.5] | 0 |
| F10(Cross-in-tray) | 2 | [-10, 10] | -2.0626 |
| 函数 | 统计结果 | IWOA | WOA | GWO | PSO | SCA |
|---|---|---|---|---|---|---|
| F1 | Mean | 0 | 5.51×10 | 5.51×10 | 3.85×103 | 1.16×101 |
| Std | 0 | 1.08×10 | 8.36×10 | 4.46×103 | 2.48×101 | |
| F2 | Mean | 0 | 8.57×10 | 9.98×10 | 4.82×104 | 1.19×10 |
| Std | 0 | 1.91×10 | 9.22×10 | 3.30×105 | 2.15×10 | |
| F3 | Mean | 0 | 1.35×10 | 2.61×10 | 1.07×106 | 1.32×103 |
| Std | 0 | 1.87×10 | 5.38×10 | 1.15×106 | 4.44×103 | |
| F4 | Mean | 0 | 2.69×10 | 3.10×10 | 2.82×101 | 2.97×101 |
| Std | 0 | 2.95×10 | 3.57×10 | 5.97 | 1.00×101 | |
| F5 | Mean | 0 | 0 | 0 | 2.93×103 | 1.61×102 |
| Std | 0 | 0 | 0 | 2.01×103 | 8.26×101 | |
| F6 | Mean | 0 | 0 | 0 | 1.81 | 4.73×10 |
| Std | 0 | 0 | 0 | 9.22×10 | 2.95×10 | |
| F7 | Mean | 9.97×10 | 4.27×10 | 2.44×10 | 2.68×106 | 8.35×105 |
| Std | 2.11×10 | 5.09×10 | 5.36×10 | 1.17×107 | 2.78×106 | |
| F8 | Mean | |||||
| Std | 8.25×10 | 1.06×10 | 9.18×10 | 2.70×10 | 4.89×10 | |
| F9 | Mean | 6.05×10 | 1.36×10 | 1.96×10 | 5.61×10 | 4.47×10 |
| Std | 3.14×10 | 2.11×10 | 2.35×10 | 1.52×10 | 5.25×10 | |
| F10 | Mean | |||||
| Std | 2.26×10 | 4.08×10 | 1.50×10 | 8.88×10 | 3.67×10 |
表2 算法寻优结果比较
Tab.2 Comparison of optimization results of 6 algorithms
| 函数 | 统计结果 | IWOA | WOA | GWO | PSO | SCA |
|---|---|---|---|---|---|---|
| F1 | Mean | 0 | 5.51×10 | 5.51×10 | 3.85×103 | 1.16×101 |
| Std | 0 | 1.08×10 | 8.36×10 | 4.46×103 | 2.48×101 | |
| F2 | Mean | 0 | 8.57×10 | 9.98×10 | 4.82×104 | 1.19×10 |
| Std | 0 | 1.91×10 | 9.22×10 | 3.30×105 | 2.15×10 | |
| F3 | Mean | 0 | 1.35×10 | 2.61×10 | 1.07×106 | 1.32×103 |
| Std | 0 | 1.87×10 | 5.38×10 | 1.15×106 | 4.44×103 | |
| F4 | Mean | 0 | 2.69×10 | 3.10×10 | 2.82×101 | 2.97×101 |
| Std | 0 | 2.95×10 | 3.57×10 | 5.97 | 1.00×101 | |
| F5 | Mean | 0 | 0 | 0 | 2.93×103 | 1.61×102 |
| Std | 0 | 0 | 0 | 2.01×103 | 8.26×101 | |
| F6 | Mean | 0 | 0 | 0 | 1.81 | 4.73×10 |
| Std | 0 | 0 | 0 | 9.22×10 | 2.95×10 | |
| F7 | Mean | 9.97×10 | 4.27×10 | 2.44×10 | 2.68×106 | 8.35×105 |
| Std | 2.11×10 | 5.09×10 | 5.36×10 | 1.17×107 | 2.78×106 | |
| F8 | Mean | |||||
| Std | 8.25×10 | 1.06×10 | 9.18×10 | 2.70×10 | 4.89×10 | |
| F9 | Mean | 6.05×10 | 1.36×10 | 1.96×10 | 5.61×10 | 4.47×10 |
| Std | 3.14×10 | 2.11×10 | 2.35×10 | 1.52×10 | 5.25×10 | |
| F10 | Mean | |||||
| Std | 2.26×10 | 4.08×10 | 1.50×10 | 8.88×10 | 3.67×10 |
| 实验加工条件 | 参数 |
|---|---|
| 机床 | Roders Tech RFMT60 |
| 数据采集卡 | NIDAQPCI1200 |
| 加速度传感器 | Kistle8636C |
| 工业显微镜 | LEICA MZ12 |
| 力传感器 | Kistler9265B 三向测力仪 |
| 电荷放大器 | Kistler5019A 电荷放大器 |
| 声发射传感器 | Kistler 8152 |
| 刀具 | 球头硬质合金铣刀3齿 |
| 切削材料 | 不锈钢(HRC52) |
表3 实验条件
Tab. 3 Experimental condition
| 实验加工条件 | 参数 |
|---|---|
| 机床 | Roders Tech RFMT60 |
| 数据采集卡 | NIDAQPCI1200 |
| 加速度传感器 | Kistle8636C |
| 工业显微镜 | LEICA MZ12 |
| 力传感器 | Kistler9265B 三向测力仪 |
| 电荷放大器 | Kistler5019A 电荷放大器 |
| 声发射传感器 | Kistler 8152 |
| 刀具 | 球头硬质合金铣刀3齿 |
| 切削材料 | 不锈钢(HRC52) |
| 序号 | 特征名称 | 序号 | 特征名称 |
|---|---|---|---|
| 1 | 平均值 | 17 | 均方根频率 |
| 2 | 平方根均值平方 | 18 | 频率幅值方差 |
| 3 | 最大值 | 19 | 频域幅值偏度 |
| 4 | 峰峰值 | 20 | 频率幅值峭度 |
| 5 | 标准差 | 21 | 频率标准差 |
| 6 | 均方根值 | 22 | 频域频率歪度 |
| 7 | 波形因子 | 23 | 频域频率峭度 |
| 8 | 脉冲因子 | 24 | 平方根比率 |
| 9 | 清晰因子 | 25 | 能量值1 |
| 10 | 峰值因子 | 26 | 能量值2 |
| 11 | 偏度 | 27 | 能量值3 |
| 12 | 峭度 | 28 | 能量值4 |
| 13 | 频域幅值平均值 | 29 | 能量值5 |
| 14 | 重心频率 | 30 | 能量值6 |
| 15 | 均方频率 | 31 | 能量值7 |
| 16 | 频率方差 | 32 | 能量值8 |
表4 特征指标
Tab.4 Characteristic index
| 序号 | 特征名称 | 序号 | 特征名称 |
|---|---|---|---|
| 1 | 平均值 | 17 | 均方根频率 |
| 2 | 平方根均值平方 | 18 | 频率幅值方差 |
| 3 | 最大值 | 19 | 频域幅值偏度 |
| 4 | 峰峰值 | 20 | 频率幅值峭度 |
| 5 | 标准差 | 21 | 频率标准差 |
| 6 | 均方根值 | 22 | 频域频率歪度 |
| 7 | 波形因子 | 23 | 频域频率峭度 |
| 8 | 脉冲因子 | 24 | 平方根比率 |
| 9 | 清晰因子 | 25 | 能量值1 |
| 10 | 峰值因子 | 26 | 能量值2 |
| 11 | 偏度 | 27 | 能量值3 |
| 12 | 峭度 | 28 | 能量值4 |
| 13 | 频域幅值平均值 | 29 | 能量值5 |
| 14 | 重心频率 | 30 | 能量值6 |
| 15 | 均方频率 | 31 | 能量值7 |
| 16 | 频率方差 | 32 | 能量值8 |
| 实验组 | 训练集+验证集 | 测试集 |
|---|---|---|
| 第1组 | C1+ C4 | C6 |
| 第2组 | C1+ C6 | C4 |
| 第3组 | C4+ C6 | C1 |
表5 实验设置
Tab.5 Experimental settings
| 实验组 | 训练集+验证集 | 测试集 |
|---|---|---|
| 第1组 | C1+ C4 | C6 |
| 第2组 | C1+ C6 | C4 |
| 第3组 | C4+ C6 | C1 |
| 测试集 | 学习率 | BiLSTM隐藏神经元数目 | dropout |
|---|---|---|---|
| C1 | 1.6×10-4 | 136 | 0.1 |
| C4 | 7.21×10-5 | 110 | 0.4 |
| C6 | 7.75×10-5 | 135 | 0.1 |
表6 模型的寻优超参数
Tab.6 Optimization hyper parameters of the model
| 测试集 | 学习率 | BiLSTM隐藏神经元数目 | dropout |
|---|---|---|---|
| C1 | 1.6×10-4 | 136 | 0.1 |
| C4 | 7.21×10-5 | 110 | 0.4 |
| C6 | 7.75×10-5 | 135 | 0.1 |
| 模型 | C1 | C4 | C6 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | |
| A | 5.20 | 6.50 | 0.95 | 10.81 | 12.46 | 0.88 | 7.82 | 9.28 | 0.95 |
| B | 6.86 | 8.31 | 0.93 | 11.12 | 13.34 | 0.82 | 9.75 | 11.24 | 0.94 |
| C | 7.65 | 9.12 | 0.92 | 10.86 | 13.57 | 0.79 | 11.00 | 12.64 | 0.93 |
| D | 10.36 | 12.47 | 0.73 | 12.47 | 15.13 | 0.69 | 16.04 | 17.97 | 0.85 |
表7 模型评价指标
Tab.7 Model evaluation index
| 模型 | C1 | C4 | C6 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | |
| A | 5.20 | 6.50 | 0.95 | 10.81 | 12.46 | 0.88 | 7.82 | 9.28 | 0.95 |
| B | 6.86 | 8.31 | 0.93 | 11.12 | 13.34 | 0.82 | 9.75 | 11.24 | 0.94 |
| C | 7.65 | 9.12 | 0.92 | 10.86 | 13.57 | 0.79 | 11.00 | 12.64 | 0.93 |
| D | 10.36 | 12.47 | 0.73 | 12.47 | 15.13 | 0.69 | 16.04 | 17.97 | 0.85 |
| 模型 | C1 | C4 | C6 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | |
| SSEA-BP | 7.29 | 10.08 | 0.94 | 12.44 | 14.62 | 0.93 | 12.00 | 13.53 | 0.91 |
| CAHSMM | 6.25 | 8.07 | NA | 17.73 | 22.03 | NA | 18.90 | 22.78 | NA |
| OSVR | 7.0 | 8.7 | NA | 7.1 | 10.1 | NA | 7.3 | 10.4 | NA |
| RNN | 13.1 | 15.6 | NA | 16.7 | 19.7 | NA | 25.5 | 32.9 | NA |
| Deep LSTMs | 8.3 | 12.1 | NA | 8.7 | 10.2 | NA | 15.2 | 18.9 | NA |
| 1D-CNN | 8.22 | 10.22 | NA | 15.05 | 17.56 | NA | 14.97 | 18.33 | NA |
| IWOA-IECA-BiLSTM | 5.2 | 6.5 | 0.95 | 10.81 | 12.46 | 0.88 | 7.82 | 9.28 | 0.95 |
表8 引文模型的评价指标
Tab.8 Indicators of citation models
| 模型 | C1 | C4 | C6 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | |
| SSEA-BP | 7.29 | 10.08 | 0.94 | 12.44 | 14.62 | 0.93 | 12.00 | 13.53 | 0.91 |
| CAHSMM | 6.25 | 8.07 | NA | 17.73 | 22.03 | NA | 18.90 | 22.78 | NA |
| OSVR | 7.0 | 8.7 | NA | 7.1 | 10.1 | NA | 7.3 | 10.4 | NA |
| RNN | 13.1 | 15.6 | NA | 16.7 | 19.7 | NA | 25.5 | 32.9 | NA |
| Deep LSTMs | 8.3 | 12.1 | NA | 8.7 | 10.2 | NA | 15.2 | 18.9 | NA |
| 1D-CNN | 8.22 | 10.22 | NA | 15.05 | 17.56 | NA | 14.97 | 18.33 | NA |
| IWOA-IECA-BiLSTM | 5.2 | 6.5 | 0.95 | 10.81 | 12.46 | 0.88 | 7.82 | 9.28 | 0.95 |
| [1] | ELSHEIKH A, et al. Bidirectional Handshaking LSTM for Remaining Useful Life Prediction[J]. Neurocomputing, 2019, 323: 148-156. |
| [2] | 曹大理, 孙惠斌, 张纪铎, 等. 基于卷积神经网络的刀具磨损在线监测[J]. 计算机集成制造系统, 2020, 26 (1): 74-80. |
| CAO Dali, SUN Huibin, ZHANG Jiduo, et al. In-process Tool Condition Monitoring Based on Convolution Neural Network[J]. Computer Integrated Manufacturing Systems, 2020, 26(1): 74-80. | |
| [3] | MA J, LUO D, LIAO X, et al. Tool Wear Mechanism and Prediction in Milling TC18 Titanium Alloy Using Deep Learning[J]. Measurement, 2021, 173: 108554-108554. |
| [4] | 何彦, 凌俊杰, 王禹林, 等. 基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J]. 中国机械工程, 2020, 31(16): 1959 - 1967. |
| HE Yan, LING Junjie, WANG Yulin, et al. Online Tool Wear Monitoring Model Based on Long-duration Memory Convolutional Neural Network[J]. China Mechanical Engineering, 2019, 31(16): 1959-1967. | |
| [5] | BAZI R, BENKEDJOUH T, HABBOUCHE H, et al. A Hybrid CNN-BiLSTM Approach-based Variational Mode Decomposition for Tool Wear Monitoring[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(5/6): 3803-3817. |
| [6] | 吴飞, 农皓业, 马晨浩. 基于粒子群优化算法-长短时记忆模型的刀具磨损预测方法[J]. 吉林大学学报(工学版 ), 2023, 53(4): 989-997. |
| WU Fei, NONG Haoye, MA Chenhao. Tool Wear Prediction Method Based on Particle Swarm Optimization Algorithm and Short Time Memory Model[J]. Journal of Jilin University(Engineering and Techonlogy Edition), 2023 53(4): 989-997. | |
| [7] | 肖斌, 李炎炎, 段增峰, 等. 基于ISCSO-LSTM模型的刀具磨损预测[J]. 组合机床与自动化加工技术, 2023(6): 102-105. |
| XIAO Bin, LI Yanyan, DUAN Zengfeng, et al. Based on Tool Wear Prediction ISCSO - LSTM Model[J]. Journal of Combination Machine Tools and Automatic Processing Technology, 2023(6): 102-105. | |
| [8] | SONG Yan, GAO Shengyao, LI Yibin, et al. Distributed Attention Based Temporal Convolutional Network for Remaining Useful Life Prediction[J]. IEEE Internet of Things Journal, 2021, 8(12): 9594-9602. |
| [9] | 梁露, 刘远龙, 刘韶华, 等. 基于ECA-TCN 的电力系统短期负荷预测研究[J]. 电力系统及其自动化学报, 2022, 34(11): 52-57. |
| LIANG Lu, LIU Yuanlong, LIU Shaohua, et al. Research on Short-term Load Forecasting of Power System Based on ECA-TCN[J]. Journal of Electric Power System and Its Automatic Chemistry, 2022, 34(11): 52-57. | |
| [10] | 董靖川, 武晓鑫, 高宇博, 等. 融合注意力机制的刀具磨损预测方法[J]. 天津大学学报, 2024, 57(4): 362-373. |
| DONG Jingchuan, WU Xiaoxin, GAO Yubo, et al. Tool Wear Prediction Method with Attention Mechanism[J]. Journal of Tianjin University, 2024, 57(4): 362-373. | |
| [11] | MIRJALILI S, LEWIS A. The Whale Optimization Algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. |
| [12] | MIRJALILI S, MIRJALILI S M, LEWIS A, et al. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. |
| [13] | VENTER G, SOBIESZCZANSKI-SOBIESKI J. Particle Swarm Optimization[J]. AIAA Journal, 2003, 41(8): 1583-1589. |
| [14] | MIRJALILI S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems[J]. Knowledge-based Systems, 2016, 96: 120-133. |
| [15] | QIN Yiyuan, LIU Xianli, YUE Caixu, et al. Tool Wear Identification and Prediction Method Based on Stack Sparse Self-coding Network[J]. Journal of Manufacturing Systems, 2023, 68: 72-84. |
| [16] | YAN Shichao, SUI Liang, WANG Siqi, et al. On-line Tool Wear Monitoring under Variable Milling Conditions Based on a Condition-adaptive Hidden Semi-Markov Model (CAHSMM)[J]. Mechanical Systems and Signal Processing, 2023, 200: 110644. |
| [17] | GOUGAM F, AFIA A, AITCHIKH M, et al. Computer Numerical Control Machine Tool Wear Monitoring through a Data-driven Approach[J]. Advances in Mechanical Engineering, 2024, 16(2): 1-15. |
| [18] | ZHAO Rui, WANG Jinjiang, YAN Ruqiang, et al. Machine Health Monitoring with LSTM Networks[C]∥10th International Conference on Sensing Technology(ICST). Nanjing, 2016:7796266. |
| [19] | CHENG Yaonan, LU Mengda, GAI Xiaoyu, et al. Research on Multi-signal Milling Tool Wear Prediction Method Based on GAF-ResNext[J]. Robotics and Computer-Integrated Manufacturing, 2024, 85:102634. |
| [1] | 张建宇, 王留震, 肖勇, 马雅楠. 滚动轴承的退化特征信息融合与剩余寿命预测[J]. 中国机械工程, 2025, 36(07): 1553-1561. |
| [2] | 曾浩, 曹华军, 董俭雄. 基于ISABO-IBiLSTM模型的刀具磨损预测方法[J]. 中国机械工程, 2024, 35(11): 1995-2006. |
| [3] | 李悦1, 2, 谢恒1, 周公博1, 2, 周坪1, 2, 李猛钢1, 2. 基于半监督贝叶斯Transformer的刀具磨损软测量及不确定性分析方法[J]. 中国机械工程, 2024, 35(11): 2015-2025. |
| [4] | 聂鹏1, 杨程越1, 彭新月1, 于家鹤2, 潘五九1. 采用空间和通道激励注意力机制优化ResNet-50的CFRP/TC4叠层材料钻削刀具磨损状态监测[J]. 中国机械工程, 2024, 35(10): 1793-1801. |
| [5] | 王秋莲1, 欧桂雄1, 徐雪娇1, 刘锦荣1, 马国红2, 邓红标2. 基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型研究[J]. 中国机械工程, 2024, 35(06): 1052-1063. |
| [6] | 勾睿杰, 张晓峰, 张鸿滨, 姚俊, 李勋. 刀具磨损对Allvac 718Plus高温合金铣削加工表面完整性及疲劳性能的影响[J]. 中国机械工程, 2023, 34(24): 2920-2926. |
| [7] | 李小睿, 赵威, 李浩, 史卫奇, 何宁. 高压低温CO2射流冷却条件下高速车削淬硬轴承钢的试验研究[J]. 中国机械工程, 2023, 34(24): 2975-2985. |
| [8] | 刘会永, 张松, 李剑峰, 栾晓娜, . 采用改进CNN-BiLSTM模型的刀具磨损状态监测[J]. 中国机械工程, 2022, 33(16): 1940-1947,1956. |
| [9] | 史珂铭, 邹益胜, 刘永志, 丁昆, 丁国富. 一种不同工艺条件下刀具磨损状态多类域适应迁移辨识方法[J]. 中国机械工程, 2022, 33(15): 1841-1849. |
| [10] | 吴世雄, 张文锋, 刘广东, 王成勇. 低温液氮冷却下高速切削淬硬钢的切屑形成及刀具磨损[J]. 中国机械工程, 2022, 33(05): 551-559. |
| [11] | 赵国龙, 信连甲, 李亮, 王珉, 郝秀清, 何宁. 高硅铝合金的金刚石涂层刀具铣削损伤机理研究[J]. 中国机械工程, 2022, 33(02): 153-159. |
| [12] | 李聪波, 孙鑫, 侯晓博, 赵希坤, 吴少卿. 数字孪生驱动的数控铣削刀具磨损在线监测方法[J]. 中国机械工程, 2022, 33(01): 78-87. |
| [13] | 尹晨, 周世超, 何建樑, 孙宇昕, 王禹林. 基于多源同步信号与深度学习的刀具磨损在线识别方法[J]. 中国机械工程, 2021, 32(20): 2482-2491. |
| [14] | 戴稳1;张超勇1;孟磊磊1;薛燕社1;肖鹏飞1;尹勇2. 采用深度学习的铣刀磨损状态预测模型[J]. 中国机械工程, 2020, 31(17): 2071-2078. |
| [15] | 何彦1;凌俊杰1;王禹林2;李育锋1;吴鹏程1;肖圳1. 基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J]. 中国机械工程, 2020, 31(16): 1959-1967. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||