中国机械工程 ›› 2025, Vol. 36 ›› Issue (9): 1934-1941.DOI: 10.3969/j.issn.1004-132X.2025.09.004
• 机械基础工程 • 上一篇
收稿日期:
2024-08-26
出版日期:
2025-09-25
发布日期:
2025-10-15
通讯作者:
洪家旺
作者简介:
李增伟,男,1999年生,硕士研究生,研究方向为机载悬挂发射装置。E-mail:894269070@qq.com基金资助:
Zengwei LI1,2(), Zewei HOU1, Jiawang HONG1(
), Junyi QI2
Received:
2024-08-26
Online:
2025-09-25
Published:
2025-10-15
Contact:
Jiawang HONG
摘要:
针对某型挂钩在进行挂载试验时阻铁镉镀层脱落造成阻铁下滑而导致悬挂物悬挂姿态发生偏转甚至有掉落风险的问题展开研究。基于内聚力模型建立了预设垂直裂纹和界面裂纹的挂钩挂载有限元模型,通过裂纹损伤因子判定裂纹失效形式,并构建了止动臂/阻铁的局部接触模型,研究镀层界面脱黏过程中的摩擦因数变化情况。结果表明,在挂钩挂载过程中,阻铁镀层与基材在结合面处产生面内剪切应力差导致界面脱黏,但整个过程不产生垂直裂纹,同时在界面脱黏过程中接触面摩擦因数会短暂降低至0.05以下,低于阻铁下滑的临界滑动摩擦因数。
中图分类号:
李增伟, 侯泽伟, 洪家旺, 祁军义. 基于内聚力模型的某型挂钩悬挂失效分析[J]. 中国机械工程, 2025, 36(9): 1934-1941.
Zengwei LI, Zewei HOU, Jiawang HONG, Junyi QI. Failure Analysis of a Certain Type of Hook Suspension Based on Cohesive Zone Model[J]. China Mechanical Engineering, 2025, 36(9): 1934-1941.
参数 | Ⅰ型裂纹[ | Ⅱ型裂纹[ |
---|---|---|
均为18.50 | 均为46.50 | |
均为11.82 | 均为25.46 | |
0.58 | 0.94 |
表1 零厚度内聚力模型参数
Tab. 1 Parameters of zero-thickness cohesive zone model
参数 | Ⅰ型裂纹[ | Ⅱ型裂纹[ |
---|---|---|
均为18.50 | 均为46.50 | |
均为11.82 | 均为25.46 | |
0.58 | 0.94 |
[1] | 胡冠杰, 冯茜, 尹中秋, 等. 悬挂发射装置翻修质量控制工作探讨[J]. 航空维修与工程, 2021(12):108-109. |
HU Guanjie, FENG Qian, YIN Zhongqiu, et al. Discussion on Quality Control for Renovation of Suspension Launcher[J]. Aviation Maintenance & Engineering, 2021(12):108-109. | |
[2] | 王乐, 刘志洋. 机载武器悬挂投射装置[J]. 机械管理开发, 2009, 24(2):40-42. |
WANG Le, LIU Zhiyang. Suspension, Releasing and Launching Systems of Airborne Weapon[J]. Mechanical Management and Development, 2009, 24(2):40-42. | |
[3] | SHISODE M, HAZRATI J, MISHRA T, et al. Modeling Boundary Friction of Coated Sheets in Sheet Metal Forming[J]. Tribology International, 2021, 153:106554. |
[4] | WANG Chen, ZHANG Jianjun, LE Kai, et al. Effect of Substrate Roughness and Contact Scale on the Tribological Performance of MoS2 Coatings[J]. Lubricants, 2023, 11(5):191. |
[5] | ZOU Yongchun, WANG Yaming, WEI Daqing, et al. In-situ SEM Analysis of Brittle Plasma Electrolytic Oxidation Coating Bonded to Plastic Aluminum Substrate:Microstructure and Fracture Behaviors[J]. Materials Characterization, 2019, 156:109851. |
[6] | ROY D, SIMON G P, FORSYTH M, et al. Modification of Thermoplastic Coatings for Improved Cathodic Disbondment Performance on a Steel Substrate:a Study on Failure Mechanisms[J]. International Journal of Adhesion and Adhesives, 2002, 22(5):395-403. |
[7] | SRIRAMAN K R, BRAHIMI S, SZPUNAR J A, et al. Tribocorrosion Behavior of Zn, Zn-Ni, Cd and Cd-Ti Electrodeposited on Low Carbon Steel Substrates[J]. Surface and Coatings Technology, 2013, 224:126-137. |
[8] | HUANG Hailiang, ZHANG Taifeng, BIAN Guixue, et al. Corrosion Behavior and Failure Mechanisms of Phosphating/Cd-Ti Composite Coating on A100 Steel under Acidic Salt Fog Conditions[J]. Surface and Coatings Technology, 2025, 501:131944. |
[9] | AYYAGARI A, ALAM K I, BERMAN D, et al. Progress in Superlubricity across Different Media and Material Systems—a Review[J]. Frontiers in Mechanical Engineering, 2022, 8:908497. |
[10] | CHEN Xiaohu, ZHANG Pingze, WEI Dongbo, et al. Tribological Behavior of Aluminum Slurry Coating on 300M Steel[J]. Journal of Materials Engineering and Performance, 2017, 26(8):3719-3727. |
[11] | ARIF KHALIL R M, HUSSAIN M I, LUQMAN N, et al. DFT-based Study of the Structural, Optoelectronic, Mechanical and Magnetic Properties of Ti3AC2 (A=P, As, Cd) for Coating Applications[J]. RSC Advances, 2022, 12(7):4395-4407. |
[12] | ZHAO Qiyue, WANG Haiyan, FAN Endian, et al. Insight into the Galvanic Corrosion Behavior of the LHE Cd-Ti 300 M Steel Coupled with TC4 Titanium Alloy in Different Atmospheric Environments[J]. Journal of Electroanalytical Chemistry, 2022, 923:116827. |
[13] | ZHAO Qiyue, ZHAO Jinbin, CHENG Xuequn, et al. Galvanic Corrosion of the Anodized 7050 Aluminum Alloy Coupled with the Low Hydrogen Embrittlement CdTi Plated 300M Steel in an Industrial-marine Atmospheric Environment[J]. Surface and Coatings Technology, 2020, 382:125171. |
[14] | TEKAYA A, GHULMAN H A, BENAMEUR T, et al. Cyclic Nanoindentation and Finite Element Analysis of Ti/TiN and CrN Nanocoatings on Zr-based Metallic Glasses Mechanical Performance[J]. Journal of Materials Engineering and Performance, 2014, 23(12):4259-4270. |
[15] | REZAEI S, WULFINGHOFF S, REESE S. Prediction of Fracture and Damage in Micro/Nano Coating Systems Using Cohesive Zone Elements[J]. International Journal of Solids and Structures, 2017, 121:62-74. |
[16] | FENG J, QIN Y, LISKIEWICZ T W, et al. Crack Propagation of a Thin Hard Coating under Cyclic Loading:Irreversible Cohesive Zone Model[J]. Surface and Coatings Technology, 2021, 426:127776. |
[17] | GEE B, PARCHEI-ESFAHANI M, GRACIE R. XFEM Simulation of a Mixed-mode Fracture Experiment in PMMA[J]. Engineering Fracture Mechanics, 2020, 229:106945. |
[18] | 黄智豪, 王金彪, 高浩宇, 等. 基于内聚力模型的柔性屏贴附及影响因素[J]. 液晶与显示, 2022, 37(7):840-848. |
HUANG Zhihao, WANG Jinbiao, GAO Haoyu, et al. Simulation and Influencing Factor of Flexible Screen Based on Cohesion Model[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(7):840-848. | |
[19] | DUGDALE D S. Yielding of Steel Sheets Containing Slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2):100-104. |
[20] | BARENBLATT G I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture[J]. Advances in Applied Mechanics, 1962, 7:55-129. |
[21] | CHEN Xiaohu, ZHANG Pingze, WEI Dongbo, et al. Tribological Behavior of Aluminum Slurry Coating on 300M Steel[J]. Journal of Materials Engineering and Performance, 2017, 26(8):3719-3727. |
[22] | FERREIRA FERNANDES M, dos SANTOS J R M, de OLIVEIRA VELLOSO V M, et al. AISI 4140 Steel Fatigue Performance:Cd Replacement by Electroplated Zn-Ni Alloy Coating[J]. Journal of Materials Engineering and Performance, 2020, 29(3):1567-1578. |
[1] | 韩晓辉, 林森, 方喜风, 王振中, 孙兆刚, 余飞龙, 李磊, 马运五, 李永兵, . 铆钉镀层对单边摩擦铆焊接头成形及力学性能的影响[J]. 中国机械工程, 2024, 35(04): 721-730. |
[2] | 王轩, 马瑞云, 周春苹. 挖补修理平纹编织面板蜂窝夹芯结构侧向压缩渐进失效机理[J]. 中国机械工程, 2023, 34(06): 727-738. |
[3] | 李秀儒, 魏兆成, 郭明龙, 王敏杰, 郭江, 高伟, 孙昉. 考虑热塑性变形的316H不锈钢Johnson-Cook本构参数逆向识别[J]. 中国机械工程, 2022, 33(07): 864-871. |
[4] | 彭旭东, 何良杰, 江锦波, 孟祥铠, 胡丽国, 郭军刚. 浸酚醛树脂石墨/SiC密封材料摩擦学特性研究[J]. 中国机械工程, 2021, 32(11): 1283-1292. |
[5] | 童文俊;王明环;邱国志;许雪峰. 摩擦副表面气膜屏蔽微细电解加工微织构及摩擦性能分析[J]. 中国机械工程, 2020, 31(11): 1331-1336. |
[6] | 聂昕;谭广;乔晓勇. 基于热-力耦合和变摩擦因数的高强钢冷冲压成形性[J]. 中国机械工程, 2018, 29(16): 1996-2002. |
[7] | 李万钟1,2;徐颖强1;孙戬1;刘楷安1;吴正海1. 纹理表面滑动摩擦稳态摩擦学性能[J]. 中国机械工程, 2018, 29(10): 1141-1146. |
[8] | 周明琢1;张耕培2;卢文龙1;张坡1;刘晓军1;彭和平3. 桨-毂轴承材料扭动微动磨损行为研究[J]. 中国机械工程, 2017, 28(23): 2785-2791. |
[9] | 麦云飞1;刘志亮1;王书文1;董冰洋2. 旋转滑动摩擦高频噪声产生机理的实验研究[J]. 中国机械工程, 2017, 28(18): 2198-2203,2208. |
[10] | 候丽霞, 刘小君, 张彤, 刘焜. 表面微凹坑和纹理方向对界面摩擦的耦合影响[J]. 中国机械工程, 2017, 28(11): 1279-1286. |
[11] | 霍文国, 丁元法, 张翔宇, 董庆运, 蔡兰蓉. 叶轮式内喷润滑剂砂轮的流场分析及实验研究[J]. 中国机械工程, 2016, 27(17): 2361-2366. |
[12] | 黄泽好, 郑风云, 姜广志, 袁光亮. 汽车排气系统悬挂点位置的优化改进[J]. 中国机械工程, 2016, 27(15): 2107-2111. |
[13] | 毕煌圣, 熊良山, 黄若峰, 毛宽民. 基于有限元仿真结果和车削实验的刀屑平均摩擦因数估计方法[J]. 中国机械工程, 2014, 25(8): 1006-1009,1016. |
[14] | 赖联锋, 高诚辉, 黄健萌. 双粗糙面滑动过程考虑黏着时的摩擦学性能分析[J]. 中国机械工程, 2014, 25(4): 534-538. |
[15] | 孟凡净, 刘焜, 王伟. 颗粒润滑界面的流态和润滑特性[J]. 中国机械工程, 2014, 25(19): 2562-2567. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||