中国机械工程 ›› 2025, Vol. 36 ›› Issue (8): 1893-1903.DOI: 10.3969/j.issn.1004-132X.2025.08.024

• 工程前沿 • 上一篇    

基于批次拆分机制的IMODE算法求解成品卷烟生产调度问题

安裕强1,2(), 张源3(), 邹平1, 陶翼飞4   

  1. 1.昆明理工大学管理与经济学院, 昆明, 650500
    2.红云红河(烟草)集团有限责任公司物流中心, 昆明, 650000
    3.红云红河(烟草)集团有限责任公司昆明卷烟厂, 昆明, 650202
    4.昆明理工大学机电工程学院, 昆明, 650500
  • 收稿日期:2024-06-11 出版日期:2025-08-25 发布日期:2025-09-18
  • 通讯作者: 张源
  • 作者简介:安裕强,男,1985年生,博士研究生、工程师。研究方向为供应链管理、决策支持系统及理论。E-mail:59672319@qq.com
  • 基金资助:
    云南省科技厅基础研究专项(202401AT070374);红云红河烟草(集团)有限责任公司科技项目(HYHH2021XX04)

IMODE Algorithm for Solving Cigarette Product Production Scheduling Problems Based on Lot-size Splitting Mechanism

Yuqiang AN1,2(), Yuan ZHANG3(), Ping ZOU1, Yifei TAO4   

  1. 1.Faculty of Management and Economics,Kunming University of Science and Technology,Kunming,650500
    2.Logistics Center,HongyunHonghe Tobacco(Group)Co. ,Ltd. ,Kunming,650500
    3.Kunming Cigarette Factory,HongyunHonghe Tobacco(Group)Co. ,Ltd. ,Kunming,650202
    4.Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming,650500
  • Received:2024-06-11 Online:2025-08-25 Published:2025-09-18
  • Contact: Yuan ZHANG

摘要:

针对成品卷烟生产调度问题,结合卷烟企业生产实际,以承担成品卷烟生产任务的卷包车间为研究对象,将其转换为异构并行机分批调度问题,以卷包机组的总切换次数和同停综合评价时间为目标建立符合成品卷烟生产工况的仿真优化模型,并设计一种基于批次拆分机制的改进多目标差分进化(IMODE)算法进行求解。为满足分批生产特点,该算法采用一种不规则的矩阵编码方式表示可行解,基于反向批次学习策略生成初始种群,通过矩阵向量间的差分运算更新种群个体,采用批次拆分机制详细划分批次批量,并对子代个体进行邻域搜索,在选择操作中引入改进精英保留策略,以提高算法的寻优能力。最后基于不同订单量和车间规模的卷烟企业生产实例进行实验对比,验证了IMODE算法的性能及其在解决成品卷烟生产调度问题上的有效性。

关键词: 异构并行机, 批次拆分, 总切换次数, 同停综合评价时间, 多目标差分进化算法

Abstract:

To address the production scheduling problem of cigarette products, the tobacco packing workshop responsible for the production tasks was taken as the research object, considering the actual production conditions of cigarette enterprises. This problem was transformed into a unrelated parallel machines lot-size scheduling problems. An optimization model was established to simulate the production conditions of cigarette products, with the total number of switches of tobacco packing machines and the comprehensive evaluation time of simultaneous stoppage as the objectives. An improved multi-objective differential evolution (IMODE) algorithm was designed to solve the problems based on a lot-size splitting mechanism. To accommodate lot-size production characteristics, the algorithm used an irregular matrix encoding method to represent feasible solutions, generated the initial population based on a reverse lot-size learning strategy, updated population individuals through differential operations between matrix vectors, and performed detailed neighborhood searches of the child individuals by splitting lot-size into smaller ones, an improved elitism retention strategy was introduced during the selection processes to enhance the algorithm's optimization capability. Finally, experiments based on production instances of cigarette enterprises of different orders and workshop scales demonstrate the performance of IMODE and the effectiveness in solving the scheduling problems of cigarette products production.

Key words: unrelated parallel machine, lot-size splitting, total number of switches, comprehensive evaluation time of simultaneous stoppage, multi-objects differential evolution (MODE)algorithm

中图分类号: