中国机械工程 ›› 2025, Vol. 36 ›› Issue (8): 1842-1852.DOI: 10.3969/j.issn.1004-132X.2025.08.019

• 服务型制造 • 上一篇    

基于神经网络和稳健估计的风电机组状态监测

岳子桐, 李艳婷(), 赵宇   

  1. 上海交通大学机械与动力工程学院, 上海, 200240
  • 收稿日期:2024-07-04 出版日期:2025-08-25 发布日期:2025-09-18
  • 通讯作者: 李艳婷
  • 作者简介:岳子桐,男,2001年生,硕士研究生。研究方向为数据驱动的过程优化与监测。
  • 基金资助:
    国家自然科学基金(72072114);国家自然科学基金(72471139)

Condition Monitoring of Wind Turbines Based on Neural Networks and Robust Estimation

Zitong YUE, Yanting LI(), Yu ZHAO   

  1. School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai,200240
  • Received:2024-07-04 Online:2025-08-25 Published:2025-09-18
  • Contact: Yanting LI

摘要:

在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度慢的问题,采用卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的网络结构,并引入一种新颖的优化算法——长鼻浣熊优化算法(COA),以改善温度预测模型的训练效果。此外,考虑到实际操作环境中传统控制图存在较高的假警报率这一问题,提出了一种结合中位数估计(MED)与最小正则化加权协方差行列式估计(MRWCD)的策略,用于残差向量的稳健性监测。基于上述改进,建立了一个多元指数加权移动平均控制图。在华东地区某一风电场的应用案例表明,相较于传统的监测手段,所提方法能够显著减少误报的情况,并且在风电机组的状态监测过程中,可靠性与稳定性更高。

关键词: 风电机组状态监测, 卷积神经网络-双向门控循环单元, 长鼻浣熊优化算法, 稳健检验统计量

Abstract:

In the condition monitoring of wind turbines, temperature time-series data was used as a key indicator to evaluate the stability of their operations, typically collected by the supervisory control and data acquisition(SCADA) systems. A new method was proposed that leveraged temperature data for more robust wind turbine condition monitoring. To address the slow convergence issues in traditional prediction models, a network structure combining CNN and BiGRU was adopted, and a novel optimization algorithm—COA was introduced, to improve the training performance of the temperature prediction model. Furthermore, considering the high false alarm rate of traditional control charts in actual operational environments, a strategy was proposed that integrated median estimation (MED) and minimum regularized weighted covariance determinant (MRWCD) for robust monitoring of residual vectors. Based on these improvements, a multivariate exponentially weighted moving average control chart was established. The applications in a wind farm located in east China demonstrate that, compared with traditional monitoring methods, the proposed approach reduces false alarms significantly and provides higher reliability and stability in wind turbine condition monitoring.

Key words: wind turbine condition monitoring, convolutional neural network-bidirectional gated recurrent unit(CNN- BiGRU), coati optimization algorithm(COA), robust test statistics

中图分类号: